| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Quasi-static and impact behaviour of polymer-metal interpenetrating phase TPMS composites
Nejc Novak, Oraib Al-Ketan, Anja Mauko, Lovre Krstulović-Opara, Shigeru Tanaka, Matej Borovinšek, Boštjan Vihar, Uroš Maver, Kazuyuki Hokamoto, Matej Vesenjak, Zoran Ren, 2025, original scientific article

Abstract: Interpenetrating phase composites (IPC) are materials with two or more mutually continuous, interconnected phases. This structure allows each phase to retain its properties, while together they exhibit enhanced synergistic properties. In this work, polymer-metal IPCs with Triply Periodical Minimal Surface (TPMS) structures were fabricated and tested for their mechanical properties at different impact velocities (ranging from 0.1 mm/s to 250 m/s). Samples. The samples comprise a stainless steel reinforcement phase and two polymeric matrices (silicone and epoxy). Computed tomography was used to evaluate the internal structure and the fabrication quality. The results showed that the samples were thoroughly infiltrated with polymeric filler, achieving a high degree of homogeneity in the composite. The compression tests of silicone-filled IPCs showed an increase in stiffness. Still, the Specific Energy Absorption (SEA) was not improved due to the non-optimal stiffness ratio between the polymeric matrix and the metallic reinforcement phase. However, using epoxy as the matrix resulted in the SEA enhancement of 38 %. This is attributed to the interlocking mechanism between the two phases, which improved the macroscopic mechanical properties. The compression tests showed significant strain rate hardening due to the base material’s strain rate sensitivity and the inertia effects.
Keywords: TPMS, interpenetrating phase composite, polymer filler, hybrid structure, experimental testing, mechanical properties, strain rate effect
Published in DKUM: 26.05.2025; Views: 0; Downloads: 3
.pdf Full text (10,05 MB)
This document has many files! More...

2.
Mechanism elucidation of high-pressure generation in cellular metal at high-velocity impact
Masatoshi Nishi, Shigeru Tanaka, Akihisa Mori, Matej Vesenjak, Zoran Ren, Kazuyuki Hokamoto, 2022, original scientific article

Abstract: Cellular metals exhibit diverse properties, depending on their geometries and base materials. This study investigated the mechanism of high-pressure generation during the high-velocity impact of unidirectional cellular (UniPore) materials. Cubic UniPore copper samples were mounted on a projectile and subjected to impact loading using a powder gun to induce direct impact of samples. The specimens exhibited a unique phenomenon of high-pressure generation near the pores during compression. We elucidate the mechanism of the high-pressure phenomenon and discuss the pore geometries that contribute to the generation of high pressures.
Keywords: cellular metal, high-pressure, high-velocity impact, computational simulation, metal jet
Published in DKUM: 24.03.2025; Views: 0; Downloads: 2
.pdf Full text (3,90 MB)
This document has many files! More...

3.
Dynamic property of aluminium foam
Seiichi Irie, Toshihiko Okano, Shigeru Tanaka, Matej Vesenjak, Zoran Ren, Kazuyuki Hokamoto, Shigeru Itoh, 2010, published scientific conference contribution abstract

Keywords: aluminium foam, powder gun, high strain rate
Published in DKUM: 10.07.2015; Views: 1739; Downloads: 50
URL Link to full text

Search done in 0.04 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica