| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
Coupled simulations of nozzle flow, primary fuel jet breakup, and spray formation
Eberhard von Berg, Wilfried Edelbauer, Aleš Alajbegović, Reinhard Tatschl, Martin Volmajer, Breda Kegl, Lionel C. Ganippa, 2005, original scientific article

Abstract: Presented are two approaches for coupled simulations of the injector flow withspray formation. In the first approach the two-fluid model is used within the injector for the cavitating flow. A primary breakup model is then applied at the nozzle orifice where it is coupled with the standard discrete droplet model. In the second approach the Eulerian multi-fluid model is applied for both the nozzle and spray regions. The developed primary breakup model, used in both approaches, is based on locally resolved properties of the cavitating nozzle flow across the orifice cross section. The model provides the initial droplet size and velocity distribution for the droplet parcels released from the surface of a coherent liquid core. The major feature of the predictions obtained with the model is a remarkable asymmetry of the spray. This asymmetryis in agreement with the recent observations at Chalmers University where they performed experiments using a transparent model scaled-up injector.The described model has been implemented into AVL FIRE computational fluid dynamics code which was used to obtain all the presented results.
Keywords: internal combustion engines, fuel injection, simulations
Published in DKUM: 01.06.2012; Views: 1779; Downloads: 95
URL Link to full text

Search done in 0.04 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica