| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 10
First pagePrevious page1Next pageLast page
1.
Weakly toll convexity in graph products
Polona Repolusk, 2025, original scientific article

Keywords: weakly toll convexity, weakly toll number, graph product
Published in DKUM: 11.04.2025; Views: 0; Downloads: 5
.htm Full text (157,97 KB)
This document has many files! More...

2.
More results on the domination number of Cartesian product of two directed cycles
Ansheng Ye, Fang Miao, Zehui Shao, Jia-Bao Liu, Janez Žerovnik, Polona Repolusk, 2019, original scientific article

Abstract: Let γ(D) denote the domination number of a digraph D and let C$_m$□C$_n$ denote the Cartesian product of C$_m$ and C$_n$, the directed cycles of length n ≥ m ≥ 3. Liu et al. obtained the exact values of γ(C$_m$□C$_n$) for m up to 6 [Domination number of Cartesian products of directed cycles, Inform. Process. Lett. 111 (2010) 36–39]. Shao et al. determined the exact values of γ(C$_m$□C$_n$) for m = 6, 7 [On the domination number of Cartesian product of two directed cycles, Journal of Applied Mathematics, Volume 2013, Article ID 619695]. Mollard obtained the exact values of γ(C$_m$□C$_n$) for m = 3k + 2 [M. Mollard, On domination of Cartesian product of directed cycles: Results for certain equivalence classes of lengths, Discuss. Math. Graph Theory 33(2) (2013) 387–394.]. In this paper, we extend the current known results on C$_m$□C$_n$ with m up to 21. Moreover, the exact values of γ(C$_n$□C$_n$) with n up to 31 are determined.
Keywords: domination number, Cartesian product, directed cycle
Published in DKUM: 02.09.2022; Views: 611; Downloads: 13
URL Link to full text

3.
Roman domination number of the Cartesian products of paths and cycles
Polona Repolusk, Janez Žerovnik, 2012, original scientific article

Abstract: Roman domination is a historically inspired variety of general domination such that every vertex is labeled with labels from $\{0,1,2\}$. Roman domination number is the smallest of the sums of labels fulfilling condition that every vertex, labeled 0, has a neighbor, labeled 2. Using algebraic approach we give ▫$O(C)$▫ time algorithm for computing Roman domination number of special classes of polygraphs (rota- and fasciagraphs). By implementing the algorithm we give formulas for Roman domination number of the Cartesian products of paths and cycles ▫$P_n \Box P_k$▫, ▫$P_n \Box C_k$▫ for ▫$k \leq 8$▫ and ▫$n \in {\mathbb N}$▫ and for ▫$C_n \Box P_k$▫ and ▫$C_n \Box C_k$▫ for ▫$k \leq 5$▫, ▫$n \in {\mathbb N}$▫. We also give a list of Roman graphs among investigated families.
Keywords: graph theory, Roman domination number, Cartesian product, polygraphs, path algebra
Published in DKUM: 23.08.2017; Views: 1634; Downloads: 267
.pdf Full text (719,06 KB)
This document has many files! More...

4.
Razred grafov H(n, k)
Nuša Flajšman, 2016, undergraduate thesis

Abstract: Naj bosta n in k naravni števili in n≥k. To diplomsko delo predstavlja nov razred grafov H(n,k), ki vsebuje hiperkocke ter Johnsonove in Kneserjeve grafe kot njegove podgrafe. V prvem poglavju so povzeti osnovni pojmi iz teorije grafov, v drugem delu pa bodo predstavljeni nekateri rezultati vezani na družino H(n,k). Na primer, H(n,k) ima maksimalno povezanost (n nad k), H(n,k) je Hamiltonov, če je k liho število ter je sestavljen iz dveh izomorfnih povezanih komponent, če je k sodo število.
Keywords: teorija grafov, hiperkocke, hamiltonovi grafi, Johnsonovi grafi, Kneserjevi grafi
Published in DKUM: 23.09.2016; Views: 1946; Downloads: 110
.pdf Full text (1,69 MB)

5.
O mavričnem dominantnem številu
Anastazija Tacer, 2016, undergraduate thesis

Abstract: V diplomskem delu ugotavljamo meje t-mavričnega dominantnega števila za poljuben graf. Kadar je t = 3, govorimo o 3-mavrični dominantni funkciji. Pri označevanju vozlišč se omejimo na cikle (Cn), poti (Pn) in posplošene Petersenove grafe P(n,k). Zapišemo meje 3-mavričnega dominantnega števila za poti in cikle in nekatere posplošene Petersenove grafe.
Keywords: Mavrično dominantno število, mavrična dominantna funkcija, cikel, pot, posplošen Petersenov graf.
Published in DKUM: 10.03.2016; Views: 2009; Downloads: 117
.pdf Full text (731,64 KB)

6.
A note on the domination number of the Cartesian products of paths and cycles
Polona Repolusk, Janez Žerovnik, 2011

Abstract: Z uporabo algebraičnega pristopa implementiramo konstantni algoritem za računanje dominantnega števila kartezičnih produktov poti in ciklov. Podamo formule za dominantna števila ▫$gamma(P_n Box C_k)$▫ (za ▫$k leq 11$▫, ▫$n in {mathbb N}$)▫ in dominantna števila ▫$gamma(C_n Box P_k)$▫ in ▫$gamma(C_n Box C_k)$▫ (za ▫$k leq 6$▫, ▫$n in {mathbb N}$▫).
Keywords: teorija grafov, kartezični produkt, grid, torus, dominacija, algebra poti, konstantni algoritem, graph theory, Cartesian product, grid graph, torus, graph domination, path algebra, constant time algorithm
Published in DKUM: 10.07.2015; Views: 1740; Downloads: 41
URL Link to full text

7.
Roman domination number of the Cartesian products of paths and cycles
Polona Repolusk, Janez Žerovnik, 2011, original scientific article

Abstract: Rimska dominacija je zgodovinsko utemeljena različica običajne dominacije, pri kateri vozlišča grafa označimo z oznakami iz množice ▫${0,1,2}$▫ tako, da ima vsako vozlišče z oznako 0 soseda z oznako 2. Najmanjšo izmed vsot oznak grafa imenujemo rimsko dominantno število grafa. Z uporabo algebraičnega pristopa dobimo konstantni algoritem za računanje rimskega dominantnega števila posebne vrste poligrafov: rota- in fasciagrafov. V posebnih primerih izračunamo formule za rimsko dominanto število kartezičnega produkta poti in ciklov ▫$P_n Box P_k$▫, ▫$P_n Box C_k$▫ za ▫$k leq 8$▫ in ▫$n in {mathbb N}$▫ ter za ▫$C_n Box P_k$▫ in ▫$C_n Box C_k$▫ za ▫$k leq 5$▫, ▫$n in {mathbb N}$▫. Dodan je seznam rimskih grafov med kartezičnimi produkti zgoraj omenjenih poti in ciklov.
Keywords: teorija grafov, kartezični produkt, rimsko dominantno število, poligrafi, algebra poti, graph theory, Roman domination number, Cartesian product, polygraphs, path algebra
Published in DKUM: 10.07.2015; Views: 1762; Downloads: 75
URL Link to full text

8.
On the Roman domination in the lexicographic product of graphs
Tadeja Kraner Šumenjak, Polona Repolusk, Aleksandra Tepeh, 2012, original scientific article

Abstract: A Roman dominating function of a graph ▫$G = (V,E)$▫ is a function ▫$f colon V to {0,1,2}$▫ such that every vertex with ▫$f(v) = 0$▫ is adjacent to some vertex with ▫$f(v) = 2$▫. The Roman domination number of ▫$G$▫ is the minimum of ▫$w(f) = sum_{v in V}f(v)$▫ over all such functions. Using a new concept of the so-called dominating couple we establish the Roman domination number of the lexicographic product of graphs. We also characterize Roman graphs among the lexicographic product of graphs.
Keywords: teorija grafov, rimska dominacija, popolna dominacija, leksikografski produkt, graph theory, Roman domination, total domination, lexicographic product
Published in DKUM: 10.07.2015; Views: 1844; Downloads: 110
URL Link to full text

9.
Sledenje bolnic z atipičnimi žleznimi celicami v brisih materničnega vratu
Ana Planinc, 2012, final research report

Abstract:
Keywords: žlezne celice, atipične, presejalni program, sledenje bolnic
Published in DKUM: 15.01.2013; Views: 3597; Downloads: 135
.pdf Full text (174,64 KB)

10.
Search done in 0.1 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica