| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
b-barvanja regularnih grafov in grafovskih produktov
Mojca Premzl, 2016, master's thesis

Abstract: Dobro barvanje vozlišč grafa $G$, v katerem v vsakem barvnem razredu obstaja vsaj eno tako vozlišče, ki ima vsaj enega soseda v vsakem drugem barvnem razredu, je b-barvanje grafa $G$. Največje naravno število $k$, za katerega graf premore b-barvanje s $k$ različnimi barvami, imenujemo b-kromatično število grafa in ga označimo s $varphi(G)$. V magistrskem delu bomo predstavili definicijo b-barvanja in podali natančne vrednosti b-kromatičnega števila za poti, cikle, polne grafe, neodvisne množice in polne dvodelne grafe. Dokazali bomo, da je določanje b-kromatičnega števila NP-poln problem, kar ima za posledico dejstvo, da lahko b-kromatično število natančno določimo le nekaterim družinam grafov. Že iz same definicije b-barvanja sledi, da je $chi(G) leq varphi(G) leq Delta(G)+1$. Podali bomo še nekaj zgornjih mej b-kromatičnega števila, ki veljajo za poljubne grafe. Med njimi izpostavimo predvsem $m$-stopnjo grafa $m(G)$; to je največje tako število $m$, za katerega graf $G$ vsebuje vsaj $m$ vozlišč stopnje vsaj $m-1$. Natančno vrednost b-kromatičnega števila lahko med drugim določimo tudi poljubnemu drevesu, in to v polinomskem času. V poglavju o regularnih grafih bomo obravnavali predvsem pogoje, ki jim mora zadoščati $d$-regularen graf, da bo njegovo b-kromatično število enako zgornji meji, to je $d+1$. Eden izmed pogojev je, da ima graf zadostno število vozlišč, in sicer vsaj $2d^3$. Dokazali bomo tudi, da je v $d$-regularnem grafu $varphi(G)=d+1$, če je ožina grafa $g(G) geq 6$ oz. če je $g(G)geq 5$ in graf bodisi ne vsebuje nobenega cikla dolžine $6$ bodisi je $d leq 6$. Nekateri $d$-regularni grafi lahko imajo kljub velikemu $d$ majhno b-kromatično število (npr. dvodelni graf $K_{d,d}$). Dokazali bomo, da velikost b-kromatičnega števila $d$-regularnih grafov, ki ne vsebujejo nobenega $4$-cikla, linearno narašča z velikostjo $d$. Za regularne grafe, ki ne vsebujejo nobenega $4$-cikla in imajo $mathrm{diam}(G) geq 6$, prav tako velja, da je $varphi(G)=d+1$. Enako velja tudi za vse regularne grafe, ki ne vsebujejo nobenega $4$-cikla, njihova vozliščna povezanost pa je $kappa(G) leq frac{d+1}{2}$. Nazadnje bomo dokazali še, da obstajajo le štirje kubični grafi, za katere je $varphi(G) leq d$, eden izmed njih je Petersenov graf. V zadnjem poglavju bomo obravnavali b-barvanja grafovskih produktov, in sicer kartezičnega, krepkega, leksikografskega in direktnega. V primeru kartezičnega in direktnega produkta je b-kromatično število navzdol omejeno z $max left{varphi(G), varphi(H) right}$, v primeru krepkega in leksikografskega produkta pa je spodnja meja enaka $varphi(G) cdot varphi(H)$. Za vsak produkt posebej bomo podali še zgornjo mejo b-kromatičnega števila. Določili bomo še nekatere natančne vrednosti b-kromatičnega števila grafovskih produktov, pri čemer bodo posamezni faktorji enaki potem, ciklom, zvezdam, v nekaterih primerih pa bo eden izmed faktorjev celo poljuben graf.
Keywords: b-barvanje, b-kromatično število, NP-poln problem, regularni graf, kartezični produkt, krepki produkt, leksikografski produkt, direktni produkt.
Published: 14.10.2016; Views: 703; Downloads: 67
.pdf Full text (1,97 MB)

Search done in 0.04 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica