1. Zasnova vpenjalnega sistema za obdelavo kovaških obreznih orodij z žično erozijo : diplomsko deloMaks Mikša, 2024, undergraduate thesis Abstract: Diplomsko delo se ukvarja z izboljšanjem procesa žične elektro erozijske obdelave (WEDM) v podjetju Marovt d.o.o.. Glavni cilj naloge je konstruiranje in izdelava namenske vpenjalne naprave, za hitrejše in hkrati natančnejše vpenjanje obdelovancev. Naprava odpravlja potrebo po večkratnem centriranju in merjenju, kar znatno skrajšuje čas obdelave in povečuje učinkovitost. Vpenjalna naprava je izdelana iz nerjavečega jekla. Rezultati diplomskega dela so izboljšanje delavnih procesov, zmanjšanje proizvodnih stroškov in povečanje konkurenčnosti podjetja. Keywords: žična elektro erozijska obdelava, kovanje, obrezovanje, vpenjalni sistemi, mehanska obdelava Published in DKUM: 11.04.2025; Views: 0; Downloads: 14
Full text (2,14 MB) |
2. Predicting corn moisture content in continuous drying systems using LSTM neural networksMarko Simonič, Mirko Ficko, Simon Klančnik, 2025, original scientific article Abstract: As we move toward Agriculture 4.0, there is increasing attention and pressure on the productivity of food production and processing. Optimizing efficiency in critical food processes such as corn drying is essential for long-term storage and economic viability. By using innovative technologies such as machine learning, neural networks, and LSTM modeling, a predictive model was implemented for past data that include various drying parameters and weather conditions. As the data collection of 3826 samples was not originally intended as a dataset for predictive models, various imputation techniques were used to ensure integrity. The model was implemented on the imputed data using a multilayer neural network consisting of an LSTM layer and three dense layers. Its performance was evaluated using four objective metrics and achieved an RMSE of 0.645, an MSE of 0.416, an MAE of 0.352, and a MAPE of 2.555, demonstrating high predictive accuracy. Based on the results and visualization, it was concluded that the proposed model could be a useful tool for predicting the moisture content at the outlets of continuous drying systems. The research results contribute to the further development of sustainable continuous drying techniques and demonstrate the potential of a data-driven approach to improve process efficiency. This method focuses on reducing energy consumption, improving product quality, and increasing the economic profitability of food processing Keywords: drying, moisture prediction, big data, artificial intelligence, LSTM Published in DKUM: 21.03.2025; Views: 0; Downloads: 10
Full text (2,99 MB) This document has many files! More... |
3. Predictive modelling of weld bead geometry in wire arc additive manufacturingKristijan Šket, Miran Brezočnik, Timi Karner, Rok Belšak, Mirko Ficko, Tomaž Vuherer, Janez Gotlih, 2025, original scientific article Abstract: This study investigates the predictive modelling of weld bead geometry in wire arc additive manufacturing (WAAM) through advanced machine learning methods. While WAAM is valued for its ability to produce large, complex metal parts with high deposition rates, precise control of the weld bead remains a critical challenge due to its influence on mechanical properties and dimensional accuracy. To address this problem, this study utilized machine learning approaches—Ridge regression, Lasso regression and Bayesian ridge regression, Random Forest and XGBoost—to predict the key weld bead characteristics, namely height, width and cross-sectional area. A Design of experiments (DOE) was used to systematically vary the welding current and travelling speed, with 3D weld bead geometries captured by laser scanning. Robust data pre-processing, including outlier detection and feature engineering, improved modelling accuracy. Among the models tested, XGBoost provided the highest prediction accuracy, emphasizing its potential for real-time control of WAAM processes. Overall, this study presents a comprehensive framework for predictive modelling and provides valuable insights for process optimization and the further development of intelligent manufacturing systems. Keywords: wire arc additive manufacturing, WA AM, predictive modelling, machine learning, weld bead geometry, XGBoost Published in DKUM: 13.03.2025; Views: 0; Downloads: 6
Full text (3,54 MB) |
4. Enhancing manufacturing precision: Leveraging motor currents data of computer numerical control machines for geometrical accuracy prediction through machine learningLucijano Berus, Jernej Hernavs, David Potočnik, Kristijan Šket, Mirko Ficko, 2024, original scientific article Abstract: Direct verification of the geometric accuracy of machined parts cannot be performed simultaneously with active machining operations, as it usually requires subsequent inspection with measuring devices such as coordinate measuring machines (CMMs) or optical 3D scanners. This sequential approach increases production time and costs. In this study, we propose a novel indirect measurement method that utilizes motor current data from the controller of a Computer Numerical Control (CNC) machine in combination with machine learning algorithms to predict the geometric accuracy of machined parts in real-time. Different machine learning algorithms, such as Random Forest (RF), k-nearest neighbors (k-NN), and Decision Trees (DT), were used for predictive modeling. Feature extraction was performed using Tsfresh and ROCKET, which allowed us to capture the patterns in the motor current data corresponding to the geometric features of the machined parts. Our predictive models were trained and validated on a dataset that included motor current readings and corresponding geometric measurements of a mounting rail later used in an engine block. The results showed that the proposed approach enabled the prediction of three geometric features of the mounting rail with an accuracy (MAPE) below 0.61% during the learning phase and 0.64% during the testing phase. These results suggest that our method could reduce the need for post-machining inspections and measurements, thereby reducing production time and costs while maintaining required quality standards Keywords: smart production machines, data-driven manufacturing, machine learning algorithms, CNC controller data, geometrical accuracy Published in DKUM: 10.03.2025; Views: 0; Downloads: 6
Full text (4,44 MB) This document has many files! More... |
5. Study of environmental impacts on overhead transmission lines using genetic algorithmsKristijan Šket, Mirko Ficko, Nenad Gubeljak, Miran Brezočnik, 2023, original scientific article Abstract: In our study, we explored the complexities of overhead transmission line (OTL) engineering, specifically focusing on their responses to varying atmospheric conditions (ambient temperature, ambient humidity, solar irradiance, ambient pressure, wind speed, wind direction), and electric current usage. Our goal was to comprehend how these independent variables impact critical responses (dependent variables) such as conductor temperature, conductor sag, tower leg stress, and vibrations – parameters crucial for electric distribution. We modelled the target output variable as a polynomial of a certain degree of the input variables. The precise forms of the polynomial were determined using the genetic algorithms (GA). Developed models are essential for quantifying the influence of each input parameter, enriching our understanding of essential system elements. They provide long-term predictions for assessing transmission line lifespan and structural stability, with particularly high precision in forecasting temperature and sag angle. It is important to note that certain engineering parameters, such as material properties and load considerations, were not included in our research, potentially influencing accuracy. Keywords: Overhead Transmission Lines (OTL), machine learning, modelling, optimization, genetic algorithms (GA) Published in DKUM: 10.03.2025; Views: 0; Downloads: 3
Full text (417,77 KB) This document has many files! More... |
6. Optimizing laser cutting of stainless steel using latin hypercube sampling and neural networksKristijan Šket, David Potočnik, Lucijano Berus, Jernej Hernavs, Mirko Ficko, 2025, original scientific article Abstract: Optimizing cutting parameters in fiber laser cutting of austenitic stainless steel is challenging due to the complex interplay of multiple variables and quality metrics. To solve this problem, Latin hypercube sampling was used to ensure a comprehensive and efficient exploration of the parameter space with a smaller number of trials (185), coupled with feedforward neural networks for predictive modeling. The networks were trained with a leave-oneout cross-validation strategy to mitigate overfitting. Different configurations of hidden layers, neurons, and training functions were used. The approach was focused on minimizing dross and roughness on both the top and bottom areas of the cut surfaces. During the testing phase, an average MSE of 0.063 and an average MAPE of 4.68% were achieved by the models. Additionally, an experimental test was performed on the best parameter settings predicted by the models. Initial modelling was conducted for each quality metric individually, resulting in an average percentage difference of 1.37% between predicted and actual results. Grid search was also per formed to determine an optimal input parameter set for all outputs, with predictions achieving an average ac curacy of 98.34%. Experimental validation confirmed the accuracy and robustness of the model predictions, demonstrating the effectiveness of the methodology in optimizing multiple parameters of complex laser cutting processes. Keywords: laser cutting optimization, cut surface quality, dross formation, Latin hypercube sampling, feedforward neural network Published in DKUM: 10.01.2025; Views: 0; Downloads: 23
Full text (3,38 MB) This document has many files! More... |
7. Razvoj vpenjalne naprave za robotizirano lepljenje avtomobilskih emblemov : diplomsko deloDavid Bah, 2024, undergraduate thesis Abstract: Podjetje Roboteh, d. o. o., se ukvarja z avtomatizacijo in robotizacijo različnih industrijskih procesov. Diplomsko delo obravnava razvoj in izdelavo robotske celice za lepljene avtomobilskih emblemov oziroma znakov. Sodelovali smo pri razvoju vpenjale naprave za stiskanje avtomobilskih emblemov, poimenovane tudi ''paletka''. Po zahtevah naročnika smo razvili koncept vpenjalne naprave, ki omogoča popolnoma avtomatizirano vpetje dveh emblemov hkrati. Vpenjalno napravo smo razvili v programskem orodju SolidWorks na podlagi naročnikovih CAD modelov emblema. Sledila je izdelava in montaža vpenjalne naprave. S CNC strojem smo izdelali vse komponente za sestavo vpenjalne naprave. V sklopu montaže smo vpenjalno napravo sestavili, testirali in izpopolnili. Vpenjalna naprava izpolnjuje vse naročnikove zahteve in je pripravljena za uporabo. Keywords: vpenjalna naprava, vpenjanje emblemov, konstruiranje, strojna izdelava Published in DKUM: 30.09.2024; Views: 0; Downloads: 26
Full text (1,97 MB) |
8. Prilagoditev orodnega vpenjalnega sistema stroja za krivljenje cevi : diplomsko deloTomi Babšek, 2024, undergraduate thesis Abstract: V diplomskem delu je predstavljena prilagoditev orodnega vpenjalnega sistema CNC-stroja za krivljenje cevi, ki sem ga izdelal v času trimesečnega praktičnega usposabljanja v podjetju IMPOTT, d. o. o.
CNC-stroj za krivljenje cevi s trnom sem predeloval zato, da se na stroju lahko uporabljajo orodja za krivljenje cevi, ki jih je podjetje uporabljalo že na predhodnem stroju. Problem je v drugačni višini valjčkov, orodij in vpenjalnikov na novem stroju. Ta problem smo rešili s konstrukcijo in izdelavo prilagoditve. Razvoj in izdelava sta se izvedli s pomočjo strojnega parka podjetja: CNC-stružnice Hyundai HiT 30S in CNC-rezkalnega centra VOC-850. Prilagoditev vsebuje konstrukcijo in izdelavo več posameznih delov: podložne plošče, nosilca valjčkov, nosilca vpenjalnika, vodil. Testiranje je pokazalo, da je bila prilagoditev uspešna. Keywords: krivljenje cevi, vpenjanje orodja za krivljenje cevi, struženje, rezkanje Published in DKUM: 30.09.2024; Views: 0; Downloads: 27
Full text (7,84 MB) |
9. Preoblikovalni postopki na stružnicah : diplomsko deloIbrahim Okić, 2023, undergraduate thesis Abstract: V diplomskem delu so obravnavani postopki preoblikovanja na stružnicah, med njimi postopki rebričenja, valjanja navojev in, potisnega preoblikovanja.
Predstavili smo postopke izdelave in njihove značilnosti, prednosti ter slabosti. S postopki rebričenja pridobimo specifične lastnosti in funkcijske lastnosti.
S postopkom valjanja navojev izdelamo zelo kakovostne navoje, ki imajo dolgo življenjsko dobo. Gladilno valjanje je postopek obdelave s plastično deformacijo, ki omogoča izboljšanje natančnosti. Predstavili smo tudi postopek potisnega preoblikovanja ki ga uporabljamo za izdelavo votlih teles. Spoznali smo, da je ta postopek primeren za izdelavo manjših serij. Predstavili smo tudi orodja za posamezne postopke obdelave in njihove značilnosti. Keywords: Rebričenje, potisno preoblikovanje, valjanje navojev, gladilno valjanje Published in DKUM: 04.03.2024; Views: 268; Downloads: 36
Full text (2,10 MB) |
10. Primerjava uporabe bakrene in grafitne elektrode za potopno erozijo : diplomsko deloErik Stražiščar, 2023, undergraduate thesis Abstract: V diplomskem delu smo opisali postopek obdelave materiala z obdelovalno tehnologijo potopne erozije ter postopek rezkanja elektrod. Vsak stroj, ki smo ga uporabili, je v zaključni nalogi opisan, opisane pa so tudi posamezne tehnologije, ki so bile uporabljene pri programiranju programa za potopno erozijo. Pri tej obdelavi smo uporabili dve elektrodi iz različnih materialov. Elektrode iz bakra smo izdelali sami, elektrode iz grafita pa smo naročili že izdelane. Oba načina potopne erozije smo med seboj primerjali iz strojniškega vidika ter iz vidika ekonomike, s tem smo optimizirali obdelovalno tehnologijo. Rezultati so dokazali, da je grafitna elektroda bolj primerna pri obdelavi z nižjo frekvenco ter večji hrapavosti, bakrena elektroda pa ima prednosti pri obdelavi z višjo frekvenco in izdelavo enostavnejših oblik. Težave, ki so nastale pri posamezni tehnologiji obdelovanja, jih rešili in tako pripomogli k optimiziranju proizvodnje. Keywords: potopna erozija, grafitna elektroda, bakrena elektroda, stroški izdelave Published in DKUM: 05.10.2023; Views: 314; Downloads: 53
Full text (3,77 MB) |