| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
Landslide assessment of the Strača basin (Croatia) using machine learning algorithms
Miloš Marjanović, Miloš Kovačević, Branislav Bajat, Snježana Mihalić Arbanas, Biljana Abolmasov, 2011, original scientific article

Abstract: In this research, machine learning algorithms were compared in a landslide-susceptibility assessment. Given the input set of GIS layers for the Starča Basin, which included geological, hydrogeological, morphometric, and environmental data, a classification task was performed to classify the grid cells to: (i) landslide and non-landslide cases, (ii) different landslide types (dormant and abandoned, stabilized and suspended, reactivated). After finding the optimal parameters, C4.5 decision trees and Support Vector Machines were compared using kappa statistics. The obtained results showed that classifiers were able to distinguish between the different landslide types better than between the landslide and non-landslide instances. In addition, the Support Vector Machines classifier performed slightly better than the C4.5 in all the experiments. Promising results were achieved when classifying the grid cells into different landslide types using 20% of all the available landslide data for the model creation, reaching kappa values of about 0.65 for both algorithms.
Keywords: landslides, support vector machines, decision trees classifier, Starča Basin
Published in DKUM: 13.06.2018; Views: 943; Downloads: 57
.pdf Full text (382,76 KB)
This document has many files! More...

Search done in 0.02 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica