| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 10 / 94
First pagePrevious page12345678910Next pageLast page
Recent advances in the modification of electrodes for trace metal analysis: a review
Klodian Xhanari, Matjaž Finšgar, 2023, review article

Keywords: nanomaterials, biopolymers, mikroskopija
Published in DKUM: 20.05.2024; Views: 20; Downloads: 0
.pdf Full text (1,33 MB)
This document has many files! More...

Tandem GCIB-ToF-SIMS and GCIB-XPS analyses of the 2-mercaptobenzothiazole on brass
Matjaž Finšgar, 2023, original scientific article

Published in DKUM: 09.05.2024; Views: 48; Downloads: 2
.pdf Full text (5,05 MB)
This document has many files! More...

ǂThe ǂcorrosion resistance of dental Ti6Al4V with differing microstructures in oral environments
Mirjam Bajt Leban, Tadeja Kosec, Matjaž Finšgar, 2023, original scientific article

Abstract: The impact of the microstructural properties of a Ti6Al4V alloy on its electrochemical properties, as well as the effect of the α- and β-phases present within it, is still unclear. With the introduction of new, emerging technologies, such as selective laser melting and post heat treatments, the effect of the microstructure on an alloy's corrosion properties has become increasingly interesting from a scientific perspective. When these alloys are produced through different methods, despite an identical chemical composition they have diverse microstructures, and consequently display varying resistance to corrosion. In the present research study, Ti–6Al–4V alloy specimens produced by three different processes, leading to the formation of three different microstructures were investigated: heat treated specimen fabricated by selective laser melting, wrought and cast specimens. The impact of the microstructure of these alloys when immersed in artificial saliva was studied through the use of various electrochemical techniques, by microscopical examinations, and time-of-flight secondary ion mass spectrometry. Corrosion properties were investigated by the measurement of open circuit potential, linear polarization, and potentiodynamic curve measurements followed by microscopical examinations, and time-of-flight secondary ion mass spectrometry examination was conducted to reveal spatial distribution of alloying species on oxide film. It was found that the difference between specimens containing an α+β microstructure was small and not dependent on the aspect ratio of the β-phase, alloy grain size, and vanadium partitioning coefficient, but rather on the size, shape, and content of this phase.
Keywords: Ti6Al4V, dental alloy, microstructure, corrosion resistance, heat treatment, ToF-SIMS
Published in DKUM: 07.05.2024; Views: 57; Downloads: 2
.pdf Full text (8,12 MB)
This document has many files! More...

The synthesis, surface analysis, and cellular response of titania and titanium oxynitride nanotube arrays prepared on TiAl6V4 for potential biomedical applications
Katja Andrina Kravanja, Luka Suhadolnik, Marjan Bele, Uroš Maver, Jan Rožanc, Željko Knez, Maša Knez Marevci, Matjaž Finšgar, 2023, original scientific article

Abstract: Titania nanotubes are gaining prominence in the biomedical field as implant materials due to their mechanical durability, nano-rough properties, and positive influence on cellular response. This work aimed to synthesize titania and titanium oxynitride (TieOeN) nano- tubular arrays on TiAl6V4 substrates using an anodic oxidation process followed by annealing in air or by additional nitridation in NH3 atmosphere. Different nanotubular layers of unique morphology and structure were fabricated and investigated using advanced surface analysis and biocompatibility tests. In-depth surface analysis was per- formed by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), 3D profilometry, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). Cell testing using adipose- derived mesenchymal stem cells and human fetal osteoblasts demonstrated good cell viability, high proliferative capacity, and a favorable overall effect on cell morphology for the TieOeN nanotubes.
Keywords: surface analysis, XPS, AFM, tandem ToF-SIMS, titania nanotubes, Ti-O-N nanotubes, anodization
Published in DKUM: 07.05.2024; Views: 56; Downloads: 2
.pdf Full text (8,31 MB)
This document has many files! More...

Time and potential-resolved comparison of copper disc and copper nanoparticles for electrocatalytic hydrogenation of furfural
Nik Maselj, Vasko Jovanovski, Francisco Ruiz-Zepeda, Matjaž Finšgar, Tamara Klemenčič, Jan Trputec, Ana Rebeka Kamšek, Marjan Bele, Nejc Hodnik, Primož Jovanovič, 2023, original scientific article

Abstract: Herein, a comparative analysis of two case example catalysts for electrocatalytic hydrogenation (ECH) of furfural under acidic conditions, namely a copper polycrystalline disc and copper nanoparticles dispersed on carbon support, is performed. To gain a detailed insight on ECH trends, a task-specific methodology is employed based on electrochemistry–mass spectrometry coupling, which enabled time- and potential-resolved detection of volatile ECH products, i.e., 2-methylfurane (2-MF) and H2. In this way, the ability to elucidate potential-dependent product distribution for the two catalysts, namely faradaic efficiency, is achieved. Accordingly, the nanoparticulate analog is significantly more active toward competitive hydrogen evolution reaction and 2-MF production, whereas the polycrystalline sample is more selective toward furfuryl alcohol. The observed differences in ECH are ascribed to alterations in surface domains, which is supported by surface-sensitive lead underpotential deposition characterization.
Keywords: baker, nanodelci, elektrokataliza, copper, nanoparticles, electrocatalytic hydrogeneration
Published in DKUM: 19.04.2024; Views: 65; Downloads: 0
.pdf Full text (3,22 MB)
This document has many files! More...

Highly porous polymer beads coated with nanometer-thick metal oxide films for photocatalytic oxidation of bisphenol A
Gergő Ballai, Tomaž Kotnik, Matjaž Finšgar, Albin Pintar, Zoltán Kónya, András Sápi, Sebastijan Kovačič, 2023, original scientific article

Abstract: Highly porous metal oxide−polymer nanocomposites are attracting considerable interest due to their unique structural and functional features. A porous polymer matrix brings properties such as high porosity and permeability, while the metal oxide phase adds functionality. For the metal oxide phase to perform its function, it must be fully accessible, and this is possible only at the pore surface, but functioning surfaces require controlled engineering, which remains a challenge. Here, highly porous nanocomposite beads based on thin metal oxide nanocoatings and polymerized high internal phase emulsions (polyHIPEs) are demonstrated. By leveraging the unique properties of polyHIPEs, i.e., a three-dimensional (3D) interconnected network of macropores, and high-precision of the atomic-layer-deposition technique (ALD), we were able to homogeneously coat the entire surface of the pores in polyHIPE beads with TiO$_2$-, ZnO-, and Al$_2$O$_3$-based nanocoatings. Parameters such as nanocoating thickness, growth per cycle (GPC), and metal oxide (MO) composition were systematically controlled by varying the number of deposition cycles and dosing time under specific process conditions. The combination of polyHIPE structure and ALD technique proved advantageous, as MO-nanocoatings with thicknesses between 11 ± 3 and 40 ± 9 nm for TiO$_2$ or 31 ± 6 and 74 ± 28 nm for ZnO and Al$_2$O$_3$, respectively, were successfully fabricated. It has been shown that the number of ALD cycles affects both the thickness and crystallinity of the MO nanocoatings. Finally, the potential of ALD-derived TiO$_2$-polyHIPE beads in photocatalytic oxidation of an aqueous bisphenol A (BPA) solution was demonstrated. The beads exhibited about five times higher activity than nanocomposite beads prepared by the conventional (Pickering) method. Such ALD-derived polyHIPE nanocomposites could find wide application in nanotechnology, sensor development, or catalysis.
Keywords: nanovlakna, aerosoli, filtracija, emulsion-templating, macroporous polymers, atomic-layer-deposition
Published in DKUM: 15.04.2024; Views: 113; Downloads: 6
URL Link to full text
This document has many files! More...

Search done in 1.01 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica