1. Jordan maps and zero Lie product determined algebrasMatej Brešar, 2022, original scientific article Abstract: Let ▫$A$▫ be an algebra over a field ▫$F$▫ with ▫$\mathrm{char} (F) \ne 2$▫. If ▫$A$▫ is generated as an algebra by ▫$[[A,A],[A,A]]$▫, then for every skew-symmetric bilinear map ▫$\Phi:A \times A \to X$▫, where ▫$X$▫ is an arbitrary vector space over ▫$F$▫, the condition that ▫$\Phi(x^2,x)=0$▫ for all ▫$x \in A$▫ implies that ▫$\Phi(xy,z) +\Phi(zx,y) + \Phi(yz,x)=0$▫ for all ▫$x,y,z \in A$▫. This is applicable to the question of whether ▫$A$▫ is zero Lie product determined, and is also used in proving that a Jordan homomorphism from ▫$A$▫ onto a semiprime algebra ▫$B$▫ is the sum of a homomorphism and an antihomomorphism. Keywords: bilinear map, zero Lie product determined algebra, derivation, Jordan derivation, Jordan homomorphism, functional identity Published in DKUM: 18.08.2023; Views: 421; Downloads: 37 Full text (215,86 KB) This document has many files! More... |
2. Cui, Jianlian; Hou, Jinchuan: Linear maps on von Neumann algebras preserving zero products of tr-rank. (English). - [J] Bull. Aust. Math. Soc. 65, No.1, 79-91(2002). [ISSN 0004-9727]Matej Brešar, 2005, review, book review, critique Keywords: matematika, teorija operatorjev, linearni ohranjevalci, von Neumannove algebre, ničelni produkt, mathematics, operator theory, Banach algebras, linear preservers, von Neumann algebra, zero product, tr-rank Published in DKUM: 16.07.2015; Views: 1380; Downloads: 20 Link to full text |
3. A note on spectrum-preserving mapsJ. Alaminos, Matej Brešar, Peter Šemrl, A. R. Villena, 2012, original scientific article Abstract: Naj bosta ▫$A$▫ in ▫$B$▫ enotski polenostavni Banachovi algebri. Če je ▫$phi colon M_2(A)to B$▫ bijektivna linearna preslikava, ki ohranja spekter, potem je ▫$phi$▫ jordanski homomorfizem. Keywords: matematika, teorija operatorjev, ohranjevalec spektera, Banachova algebra, jordanski homomorfizem, mathematics, operator theory, spectrum-preserving map, Banach algebra, Jordan homomorphism Published in DKUM: 10.07.2015; Views: 1528; Downloads: 114 Link to full text |
4. Characterizing Jordan maps on C [ast]-algebras through zero productsJ. Alaminos, Matej Brešar, J. Extremera, A. R. Villena, 2010, original scientific article Abstract: Naj bosta ▫$A$▫ in ▫$B$▫ ▫$C^ast$▫-algebri, ▫$X$▫ naj bo bistveni Banachov ▫$A$▫-bimodul in naj bosta ▫$T colon A to B$▫ in ▫$S colon A to X$▫ zvezni linearni preslikavi; ▫$T$▫ naj bo surjektivna. Denimo, da je ▫$T(a)T(b) + T(b)T(a) = 0$▫ in ▫$S(a)b + bS(a) + aS(b) + S(b)a = 0$▫, kadarkoli ▫$a, b in A$▫ zadoščata ▫$ab = ba = 0$▫. Dokažemo, da je ▫$T = wPhi$▫ in ▫$S = D + wPsi$▫, kjer ▫$w$▫ leži v centru multiplikatorske algebre ▫$B$▫, ▫$Phicolon A to B$▫ je jordanski epimorfizem, ▫$D colon A to X$▫ je odvajanje in ▫$Psi colon A to X$▫ je bimodulski homomorfizem. Keywords: matematika, teorija operatorjev, ▫$C^ast$▫-algebra, homomorfizem, jordanski homomorfizem, odvajanje, jordansko odvajanje, ohranjevalec ničelnega produkta, mathematics, operator theory, ▫$C^ast$▫-algebra, homomorphism, Jordan homomorphism, derivation, Jordan derivation, zero-product-preserving map Published in DKUM: 10.07.2015; Views: 1114; Downloads: 47 Link to full text |
5. |
6. On bilinear maps determined by rank one idempotentsJ. Alaminos, Matej Brešar, J. Extremera, A. R. Villena, 2009, original scientific article Abstract: Naj bo ▫$M_n$▫, ▫$n geqslant 2$▫, algebra vseh ▫$n times n$▫ matrik nad poljem ▫$F$▫ karakteristike različne od 2, in naj bo ▫$Phi$▫ bilinearna preslikava iz ▫$M_n times M_n$▫ v poljubni vektorski prostor ▫$X$▫ nad ▫$F$▫. Glavni izrek pove,da je iz pogoja, da je ▫$phi(e, f ) = 0$▫ za vse ortogonalne idempotente ▫$e$▫ in ▫$f$▫ ranga 1 sledi eksistenca linearnih takih preslikav ▫$Phi_1,Phi_2 colon M_n to X$▫, da je ▫$phi(a,b) = Phi_1(ab) + Phi_2(ba)$▫ za vse ▫$a,b in M_n$▫. Izrek se uporabi pri študiju nekaterih problemov o linearnih ohranjevalcih. Keywords: matematika, teorija matrik, matrična algebra, ničelni produkt, idempotent ranga 1, linearna preslikava, bilinearna preslikava, linearni ohranjevalci, mathematics, matrix theory, matrix algebra, zero product, rank one idempotent, linear map, bilinear map, linear preserver problem Published in DKUM: 10.07.2015; Views: 1672; Downloads: 99 Link to full text |
7. Maps preserving zero productsJ. Alaminos, Matej Brešar, J. Extremera, A. R. Villena, 2009, original scientific article Abstract: Linearna preslikava ▫$T$▫ iz Banachove algebre ▫$A$▫ v Banachovo algebro ▫$B$▫ ohranja ničelni produkt, če je ▫$T(a)T(b) = 0$▫, kadarkoli je ▫$ab = 0$▫. Glavna tema članka je vprašanje, kdaj je zvezna linearna surjektivna preslikava ▫$T: A to B$▫, ki ohranja ničelni produkt, uteženi homomorfizem. Dokažemo, da to velja za velik razred algeber, ki vključuje grupne algebre. Naša metoda sloni na obravnavi bilinearnih preslikav ▫$phi : A times A to X$▫ (kjer je ▫$X$▫ Banachov prostor) z lastnostjo, da iz ▫$ab=0$▫ sledi ▫$phi(a,b) = 0$▫. Dokažemo, da taka preslikava zadošča ▫$phi(amu, b) = phi(a,mu b)$▫ za vse ▫$a,b in A$▫ in vse ▫$mu$▫ iz zaprtja glede na krepko operatorsko topologijo podalgebre multiplikacijske algebre ▫${mathcal M}(A)$▫ generirane z dvostranko potenčno omejenimi elementi. Ta metoda je uporabna tudi za karakterizacijo odvajanj s pomočjo ničelnega produkta. Keywords: matematika, teorija operatorjev, grupna algebra, ▫$C^ast$▫-algebra, homomorfizem, uteženi homomorfizem, odvajanje, posplošeno odvajanje, mathematics, operator theory, group algebra, ▫$C^ast$▫-algebra, homomorphism, weighted homomorphism, derivation, generalized derivation, separating map, disjointness preserving map, zero product preserving map, doubly power-bounded element Published in DKUM: 10.07.2015; Views: 1301; Downloads: 99 Link to full text |
8. Zero product preserving maps on C[sup]1 [0,1]J. Alaminos, Matej Brešar, Miran Černe, J. Extremera, A. R. Villena, 2008, original scientific article Abstract: Glavni rezultat članka karakterizira zvezne bilinearne preslikave ▫$phi$▫ iz ▫$C^1[0,1] times C^1[0,1]$▫ v Banachov prostor ▫$X$▫ z lastnostjo, da iz ▫$fg=0$▫ sledi ▫$phi(f,g) = 0$▫. Ta rezultat se uporabi pri študiju ohranjevalcev ničelnega produkta na ▫$C^1[0,1]$▫ in pri študiju operatorjev na ▫$C^1[0,1]$▫, ki zadoščajo neki verzijo pogoja o lokalnosti operatorja. Keywords: matematika, teorija operatorjev, zvezne odvedljive funkcije, bilinearni ohranjevalci ničelnega produkta, linearni ohranjevalci ničelnega produkta, lokalni operator, mathematics, operator theory, continuously differentiable functions, zero product preserving bilinear map, zero product preserving linear map, local operator Published in DKUM: 10.07.2015; Views: 1192; Downloads: 48 Link to full text |
9. |
10. |