SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
2.
3.
EKSPERIMENTALNO NUMERIČNA ANALIZA TOKOVNO REAKTIVNIH VELIČIN VEČPLAMENSKEGA GORILNIKA
Marko Klančišar, 2013, doctoral dissertation

Abstract: Optimizacija zgorevalnih naprav v smislu povečanja učinkovitosti in zmanjšanja obremenitve okolja s polutanti, je danes glavno vodilo pri raziskavi ter snovanju novih projektov povezanih z zgorevanjem. To je mogoče doseči s pomočjo točnih zasnov pomembnih komponent gorilnika ter kurišča, kar dodatno zajema pojave prenosa mase in toplote. V zadnjih nekaj letih je računalniška dinamika tekočin (CFD) postala popularna metoda za uporaben pristop k pridobivanju preliminarnih informacij in napovedovanju obnašanja komercialnih zgorevalnih zasnov. Vendar so pojavi, ki potekajo v gorilnikih zelo kompleksni; recirkulacija dimnih plinov, prenos energije, turbulentna kemijska kinetika in razmerje toka-kemijskih reakcij so v primeru vrtinčnih zgorevalnih naprav še ojačeni. Z omenjenega vidika je CFD analiza vrtinčnih ne-predmešanih reaktivnih tokov ena najpomembnejših in zahtevnih področij v moderni CFD. Za primerjavo so dokumentirani eksperimentalni podatki, ki predstavljajo uporabno informacijo za kontrolo in testiranje CFD. Za popis dinamike tekočin skupaj s prenosom toplote, je v literature mogoče najti različne matematične pristope. Glavni pristop uporablja turbulentne modele zgorevanja kar omogoča uporabo statističnih lastnosti skalarnega polja. Ti pristopi omogočajo v večini primerov podrobne informacije o tokovnem polju ter temperaturi vendar so pri napovedovanju koncentracij nižjih vrst manj natančni. Za kotlovske naprave je bila že predlagana nova metoda (Faravelli et al., 2001). Ta pristop (SFIRN) temelji na originalni zasnovi hibridne metode. Tokovna ter temperaturna polja niso pod vplivom nastanka NOx. Za opis nastanka toplote v CFD modeliranju je dovolj manjše število hitrih kemijskih reakcij. Spisek oziroma skupina idealnih reaktantov je definirana na osnovi rezultatov pridobljenih z numerično simulacijo. Ti reaktanti skupaj predstavljajo število enakih celic in se rešujejo s pomočjo zelo podrobne kemijske kinetike. Podrobne eksperimentalne meritve 1SF gorilnika predstavljajo pomemben testni primer z namenom potrditve numeričnega postopka, kar je mogoče kasneje razširiti na kompleksnejše primere. Realno kurilno napravo smo preučevali z uporabo računalniške dinamike tekočin; podrobneje s programskim paketom ANSYS CFX. V nalogi smo uporabili eksperimentalno dognane robne pogoje vhodnih parametrov ter nekaj parametrov drugih avtorjev. Za numerične simulacije so bili uporabljeni turbulentni modeli, modeli zgorevanja ter sevanja. Nadalje smo primerjali rezultate različnih izbranih modelov z eksperimentalnimi ter ugotavljali primernost le teh. Cilj modeliranja je bila izbira primernih modelov za uporabo numeričnega preizkušanja novih industrijskih gorilnikov, kar smo v primerjavi z eksperimentom okarakterizirali s tokovnim in temperaturnim poljem, hkrati pa z lokalno stopnjo izgorelosti (CO). Rezultati numeričnega modeliranja so bili povsod primerjani z eksperimentalnimi meritvami. Prikazan znanstveni pristop omogoča CFD analizo tokovnih lastnosti kot tudi reaktivnega toka že v fazi načrtovanja novih zasnov gorilnikov kar omogoča hitrejši in bolj zanesljiv razvoj novega izdelka.
Keywords: Swirlflame, industrijski gorilnik, računalniška dinamika tekočin, ne-predmešano zgorevanje, program ANSYS CFX, razprševanje goriva, mešalna frakcija
Published: 14.10.2013; Views: 1169; Downloads: 111
.pdf Full text (10,17 MB)

4.
Analysis of the effect of the swirl flow intensity on combustion characteristics in liquid fuel powered confined swirling flames
Marko Klančišar, Tim Schloen, Matjaž Hriberšek, Niko Samec, 2016, original scientific article

Abstract: This article examines the implementation of CFD technology in the design of the industrial liquid fuel powered swirl flame burner. The coupling between the flow field and the combustion model is based on the eddy dissipation model. The choice of the LES (Large Eddy Simulation) turbulence model over standard RANS (Reynolds Averaged Navier-Stokes) offers a possibility to improve the quality of the combustion-flow field interaction. The Wall Adapting Local Eddy-Viscosity (WALE) sub-grid model was used. The reaction chemistry is a simple infinitely fast one step global irreversible reaction. The computational model was setup with the Ansys-CFX software. Through the detailed measurements of industrial size burner, it was possible to determine the natural operational state of the burner according to the type of fuel used. For the inlet conditions, axial and radial velocity components were calculated from known physical characteristics of both the fuel and air input, with the initial tangential velocity of the fuel assumed as 18% of the initial axial fuel velocity. Different swirl number (S) values were studied. Addition of a surplus (in comparison to conventional flame stabilization) of tangential air velocity component (W), the rotational component increases itself with a considerably high magnitude, contributing to the overall flame stabilization. The level of S especially influences the turbulent energy, its dissipation rate and turbulent (Reynolds) stresses. In the case of high swirl number values (S > 0,65) it is possible to divide the flow field in three principle areas: mixing area (fuel-air), where exothermal reactions are taking place, central recirculation area and outer recirculation area, which primarily contains the flow of burnt flue gases. The described model was used to determine the flow and chemical behavior, whereas the liquid atomization was accounted for by LISA (Linear Instability Sheet Atomization) model incorporating also the cavitation within injection boundary condition. The boundary conditions were determined based on the data from the experimental hot water system. Depending on system requirements, especially with continuous physical processes as well as the results of experimental measurements, the paper reports on determination of the mixing field and its intensity in the turbulent flow, the description of heat release and interaction of turbulent flow field and chemical kinetics in the case of confined swirling flames.
Keywords: CFD, fluid dispersion, combustion, industrial burner, confined swirling flame, two-phase flow
Published: 04.08.2017; Views: 412; Downloads: 94
.pdf Full text (1,08 MB)
This document has many files! More...

Search done in 0.07 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica