| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Effect of peptides' binding on the antimicrobial activity and biocompatibility of ‎protein-based substrates ‎
Maja Kaisersberger Vincek, 2017, doctoral dissertation

Abstract: This work reveals the effect of coupling approach (chemical by using carbodiimide chemistry ‎and grafting-to vs. grafting-from synthesis routes, and enzymatic by using transglutaminase) ‎of a hydrophilic ε-poly-L-lysine (εPL) and an amphiphilic oligo-acyl-lysyl (OAK) derivative (K-7α12-OH) to wool fibers and gelatine (GEL) macromolecules, respectively, and substrates ‎antibacterial activity against Gram-negative E. coli and Gram-positive S. aureus bacteria ‎after 1–24 h of exposure, as well as their cytotoxicity. Different spectroscopic (ultraviolet-‎visible, infrared, fluorescence and electron paramagnetic resonance) and separation ‎techniques (size-exclusion chromatography and capillary zone electrophoresis) as well as ‎zeta potential and potentiometric titration analysis, were performed to confirm the covalent ‎coupling of εPL/OAK, and to determine the amount and orientation of its immobilisation.‎ The highest and kinetically the fastest level of bacterial reduction was achieved with ‎wool/GEL functionalised with εPL/OAK by chemical grafting-to approach. This effect ‎correlated with both the highest grafting yield and conformationally the highly-flexible ‎(brush-like) orientation linkage of εPL/OAK, implicating on the highest amount of accessible ‎amino groups interacting with bacterial membrane. However, OAK`s amphipathic structure, ‎the cationic charge and the hydrophobic moieties, resulted to relatively high reduction of S. ‎aureus for grafting-from and the enzymatic coupling approaches using OAK-functionalised ‎GEL. ‎ The εPL/OAK-functionalised GEL did not induce toxicity in human osteoblast cells, even at ‎‎~25-fold higher concentration than bacterial minimum inhibitory (MIC) concentration of ‎εPL/OAK, supporting their potential usage in biomedical applications.‎ It was also shown that non-ionic surfactant adsorbs strongly onto the wool surface during ‎the process of washing, thereby blocking the functional sites of immobilized εPL and ‎decreases its antibacterial efficiency. ‎ ‎
Keywords: wool, gelatine, antimicrobial peptides, ε-poly-L-lysine, oligo-acyl-lysyl, grafting chemistry, ‎grafting approach, peptide orientation, antibacterial activity, cytotoxicity‎
Published: 17.08.2017; Views: 961; Downloads: 92
.pdf Full text (3,98 MB)

2.
3.
Search done in 0.1 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica