1.
Primerjava pristopov edgeR in voom za analizo diferencialnega izražanja genov na podlagi podatkov sekvenciranja transkriptomaLara Bezjak, 2019, master's thesis
Abstract: Izhodišče: Z razvojem visoko zmogljivih tehnologij sekvenciranja, ki so omogočile pridobitev velike količine podatkov iz bioloških vzorcev, je hitro naraslo tudi število programskih orodij za urejanje teh podatkov, vendar pa trenutno še ni soglasja o najprimernejšem postopku ali metodi za identifikacijo različno izraženih genov s tehnologijo sekvenciranja naslednje generacije (RNA-seq). Namen naloge je bil analizirati dva pristopa za analizo RNA-seq podatkov in njune rezultate validirati z zlatim standardom.
Metode: V nalogi smo uporabili dva pristopa, edgeR (Robinson, et al., 2010) in limma (Ritchie, et al., 2015) -voom (Law, et al., 2014), ter njune rezultate preverili z metodo RT-qPCR. Z RT-qPCR smo preverili štiri gene, ki so imeli izračunane nasprotujoče si log2FC in p-vrednosti. Na koncu smo zbrane rezultate vseh treh metod analizirali s programskim orodjem SPSS.
Rezultati: Rezultati Spearmanovega testa korelacije so pokazali močno korelacijo med izračunanimi log2FC in p-vrednostmi obeh pristopov, vendar je Wilcoxonov test pokazal, da se log2FC in p-vrednosti kljub temu statistično značilno razlikujejo glede na to, katero metodo smo uporabili. Tri gene, ki so se po metodah edgeR in voom najbolj razlikovali, smo analizirali z RT-qPCR in ugotovili, da dobljeni rezultati qRT-PCR bolj sovpadajo s pristopom voom kot z edgeR, kar je potrdil tudi Spearmanov test korelacije in Wilcoxonov test.
Diskusija: Iz rezultatov smo zaključili, da je pristop voom primernejši, saj daje zanesljivejše rezultate kot edgeR kljub temu da smo imeli zelo majhen vzorec (3 posameznike za vsako skupino).
Keywords: RNA sekvenciranje, transkriptomika, R, RT-qPCR, bioinformatika
Published in DKUM: 11.11.2019; Views: 1464; Downloads: 227
Full text (1,59 MB)