1. Thermal decomposition kinetics and mechanism of poly(ethylene 2,5-furan dicarboxylate) Nanocomposites for food packaging applicationsJohan Stanley, Evangelia Tarani, Nina Maria Ainali, Tjaša Kraševac Glaser, Lidija Fras Zemljič, Konstantinos Chrissafis, Dimitra A. Lambropoulou, Dimitrios Bikiaris, 2024, original scientific article Abstract: Poly(ethylene 2,5-furan dicarboxylate) (PEF) based nanocomposites containing different nanoparticles like Ag, TiO2, ZnO, ZrO2 Ce-Bioglass, have been synthesized via in-situ polymerization techniques targeting food pack aging applications. Zeta potential measurements showed an increase in the negative zeta potential value due to an increase in the surface charge density of the nanocomposites. Thermogravimetric analysis results proved that, except PEF-ZnO nanocomposite, all the other nanocomposites exhibited good resistance to thermal degradation without serious mass loss until 330 ◦C. Thermal decomposition kinetic analysis and the dependence of activation energy on the degree of conversion (α), indicated that the presence of ZnO nanoparticles influences, the degradation mechanism of PEF. In contrast, the presence of Ce-Bioglass nanoparticles leads to a slower degra dation process, contributing to the enhanced resistance to thermal degradation of the PEF-Bioglass nano composite. The thermal degradation mechanism of PEF nanocomposites analyzed by pyrolysis‒gas chromatography/mass spectrometry (Py-GC/MS) indicated that the primary thermal degradation mechanism for the studied nanocomposites was β-hydrogen bond scission, while to a lesser extent, α-hydrogen bond scission products were noted in PEF-TiO2 and PEF-ZrO2 nanocomposites. Keywords: bio based polymers, Poly(ethylene 2, 5-furan dicarboxylate), nanoparticles, thermal properties, nanocomposites, decomposition mechanism Published in DKUM: 13.03.2025; Views: 0; Downloads: 4
Full text (1,89 MB) This document has many files! More... |