1. Using a region-based convolutional neural network (R-CNN) for potato segmentation in a sorting processJaka Verk, Jernej Hernavs, Simon Klančnik, 2025, original scientific article Abstract: This study focuses on the segmentation part in the development of a potato-sorting system that utilizes camera input for the segmentation and classification of potatoes. The key challenge addressed is the need for efficient segmentation to allow the sorter to handle a higher volume of potatoes simultaneously. To achieve this, the study employs a region-based convolutional neural network (R-CNN) approach for the segmentation task, while trying to achieve more precise segmentation than with classic CNN-based object detectors. Specifically, Mask R-CNN is implemented and evaluated based on its performance with different parameters in order to achieve the best segmentation results. The implementation and methodologies used are thoroughly detailed in this work. The findings reveal that Mask R-CNN models can be utilized in the production process of potato sorting and can improve the process. Keywords: image segmentation, potato sorting, neural network, mask RCNN, object detection, production process, machine learning, AI Published in DKUM: 27.03.2025; Views: 0; Downloads: 9
Full text (5,97 MB) This document has many files! More... |
2. Enhancing manufacturing precision: Leveraging motor currents data of computer numerical control machines for geometrical accuracy prediction through machine learningLucijano Berus, Jernej Hernavs, David Potočnik, Kristijan Šket, Mirko Ficko, 2024, original scientific article Abstract: Direct verification of the geometric accuracy of machined parts cannot be performed simultaneously with active machining operations, as it usually requires subsequent inspection with measuring devices such as coordinate measuring machines (CMMs) or optical 3D scanners. This sequential approach increases production time and costs. In this study, we propose a novel indirect measurement method that utilizes motor current data from the controller of a Computer Numerical Control (CNC) machine in combination with machine learning algorithms to predict the geometric accuracy of machined parts in real-time. Different machine learning algorithms, such as Random Forest (RF), k-nearest neighbors (k-NN), and Decision Trees (DT), were used for predictive modeling. Feature extraction was performed using Tsfresh and ROCKET, which allowed us to capture the patterns in the motor current data corresponding to the geometric features of the machined parts. Our predictive models were trained and validated on a dataset that included motor current readings and corresponding geometric measurements of a mounting rail later used in an engine block. The results showed that the proposed approach enabled the prediction of three geometric features of the mounting rail with an accuracy (MAPE) below 0.61% during the learning phase and 0.64% during the testing phase. These results suggest that our method could reduce the need for post-machining inspections and measurements, thereby reducing production time and costs while maintaining required quality standards Keywords: smart production machines, data-driven manufacturing, machine learning algorithms, CNC controller data, geometrical accuracy Published in DKUM: 10.03.2025; Views: 0; Downloads: 6
Full text (4,44 MB) This document has many files! More... |
3. Optimizing laser cutting of stainless steel using latin hypercube sampling and neural networksKristijan Šket, David Potočnik, Lucijano Berus, Jernej Hernavs, Mirko Ficko, 2025, original scientific article Abstract: Optimizing cutting parameters in fiber laser cutting of austenitic stainless steel is challenging due to the complex interplay of multiple variables and quality metrics. To solve this problem, Latin hypercube sampling was used to ensure a comprehensive and efficient exploration of the parameter space with a smaller number of trials (185), coupled with feedforward neural networks for predictive modeling. The networks were trained with a leave-oneout cross-validation strategy to mitigate overfitting. Different configurations of hidden layers, neurons, and training functions were used. The approach was focused on minimizing dross and roughness on both the top and bottom areas of the cut surfaces. During the testing phase, an average MSE of 0.063 and an average MAPE of 4.68% were achieved by the models. Additionally, an experimental test was performed on the best parameter settings predicted by the models. Initial modelling was conducted for each quality metric individually, resulting in an average percentage difference of 1.37% between predicted and actual results. Grid search was also per formed to determine an optimal input parameter set for all outputs, with predictions achieving an average ac curacy of 98.34%. Experimental validation confirmed the accuracy and robustness of the model predictions, demonstrating the effectiveness of the methodology in optimizing multiple parameters of complex laser cutting processes. Keywords: laser cutting optimization, cut surface quality, dross formation, Latin hypercube sampling, feedforward neural network Published in DKUM: 10.01.2025; Views: 0; Downloads: 22
Full text (3,38 MB) This document has many files! More... |
4. Razvoj traktorskega priključka za uv osvetljevanje rastlin : diplomsko deloTim Peršak, 2024, undergraduate thesis Abstract: Razvoj in izdelava traktorskega priključka za UV osvetljevanje rastlin. UV osvetljevanje rastlin dokazano vpliva na prisotnost rastlinskih patogenov in zmanjšuje nastanek bolezni rastlin. V ta namen je bil razvit in izdelan traktorski priključek, s katerim se lahko osvetljujejo rastline z UV svetlobo tipa C. Njegova delovna širina je 3000 mm, namenjen pa je horizontalnemu in vertikalnemu osvetljevanju. To omogoča osvetljevanje rastlin na polju (krompir, buče, kumare, ...) in v nasadih (vinograd, jagodičevje, ...). Prav tako razvita rešitev omogoča osvetljevanje sadnega drevja. Keywords: UV-C svetloba, traktorski priključek, osvetljevanje rastlin, konstrukcija. Published in DKUM: 02.10.2024; Views: 0; Downloads: 23
Full text (3,84 MB) |
5. Prediction of the form of a hardened metal workpiece during the straightening processTadej Peršak, Jernej Hernavs, Tomaž Vuherer, Aleš Belšak, Simon Klančnik, 2023, original scientific article Abstract: In industry, metal workpieces are often heat-treated to improve their mechanical properties, which leads to unwanted deformations and changes in their geometry. Due to their high hardness (60 HRC or more), conventional bending and rolling straightening approaches are not effective, as a failure of the material occurs. The aim of the research was to develop a predictive model that predicts the change in the form of a hardened workpiece as a function of the arbitrary set of strikes that deform the surface plastically. A large-scale laboratory experiment was carried out in which a database of 3063 samples was prepared, based on the controlled application of plastic deformations on the surface of the workpiece and high-resolution capture of the workpiece geometry. The different types of input data, describing, on the one hand, the performed plastic surface deformations on the workpieces, and on the other hand the point cloud of the workpiece geometry, were combined appropriately into a form that is a suitable input for a U-Net convolutional neural network. The U-Net model’s performance was investigated using three statistical indicators. These indicators were: relative absolute error (RAE), root mean squared error (RMSE), and relative squared error (RSE). The results showed that the model had excellent prediction performance, with the mean values of RMSE less than 0.013, RAE less than 0.05, and RSE less than 0.004 on test data. Based on the results, we concluded that the proposed model could be a useful tool for designing an optimal straightening strategy for high-hardness metal workpieces. Our results will open the doors to implementing digital sustainability techniques, since more efficient handling will result in fewer subsequent heat treatments and shorter handling times. An important goal of digital sustainability is to reduce electricity consumption in production, which this approach will certainly do. Keywords: sustraightening process, hardened workpiece, manufacturing, U-Net convolutional neural network, modeling, point cloud, digital sustainability Published in DKUM: 02.04.2024; Views: 275; Downloads: 24
Full text (10,52 MB) This document has many files! More... |
6. Analiza in optimizacija procesnih parametrov sušilnice za koruzo : magistrsko deloMarko Simonič, 2024, master's thesis Abstract: Magistrsko delo obsega opis razvoja in implementacije modela globoke nevronske mreže z LSTM arhitekturo. Model omogoča napovedovanje vlažnosti koruze na izhodu iz sušilnega sistema na podlagi meritev vlažnosti koruze na vhodu in beleženja temperaturnih parametrov med obratovanjem. Razvoj modela je vključeval temeljito analizo in preučitev posameznih temperaturnih parametrov. Pri tem smo izvedli regresijsko analizo, ki je raziskovala vpliv vhodne vlažnosti, ciljne temperature gorilnika in časa sušenja med izpusti koruze na spremembe temperaturnih parametrov v sušilnem sistemu. Poleg tega smo preučili tudi statistične vplive samih temperaturnih parametrov na vlažnost koruze na izhodu iz sušilnega sistema. Analiza nam je omogočila ustrezno pripravo podatkov za učenje napovednih modelov. Uspešnost razvitih napovednih modelov je ocenjena s povprečno absolutno napako (angl. mean absolute error – MAE), povprečno kvadratno napako (angl. mean squared error – MSE), korenom povprečne kvadratne napake (angl. root mean squared error – RMSE) in srednjo absolutno odstotkovno napako (angl. mean absolute percentage error – MAPE).
Najuspešnejši model za napovedovanje vlažnosti na izhodu iz sušilnega sistema je imel na učnih podatkih odlično zmogljivost napovedovanja, saj so povprečne vrednosti MAE znašale 0,352, RMSE 0,645, MSE 0,416 in MAPE 2,555. Izvedena je bila tudi vizualizacija rezultatov za nadaljnjo analizo in interpretacijo. Keywords: sušilni sistem, globoko učenje, LSTM, napovedovanje, optimizacija, koruza, vlaga Published in DKUM: 28.03.2024; Views: 275; Downloads: 96
Full text (3,60 MB) |
7. Nadgradnja izsekovalne linije za rondeleŽan Štern, 2019, undergraduate thesis Abstract: V diplomskem delu je predstavljena nadgradnja izsekovalne linije za rondele na način avtomatizacije sortiranja in zlaganja rondel v stolpce, ko te prispejo iz udarnega kladiva po transportnem traku. Delo, ki ga trenutno opravljajo trije delavci, se tako popolnoma avtomatizira oziroma avtomatizira do stopnje, kjer je za delo in nadzor potreben samo en delavec. Predstavljeni so tudi razlogi za izbor takšne avtomatizacije in prednosti, ki jih prinesejo podjetjem. Sistem je bil zmodeliran s pomočjo CAD programske opreme Autodesk Inventor Professional. Praktični del diplomskega dela je bil izveden v podjetju Talum, poslovna enota Rondelice. Keywords: avtomatizacija, rondela, izsekovalna linija, modernizacija, modeliranje Published in DKUM: 11.09.2019; Views: 955; Downloads: 131
Full text (5,47 MB) |
8. Uporaba globokega učenja in strojnega vida za prepoznavanje objektov v proizvodnih sistemih : magistrsko deloJernej Hernavs, 2019, master's thesis Abstract: Delo opisuje nekaj najsodobnejših pristopov reševanja inženirskih problemov z uporabo globokega učenja in predstavlja sistem za zaznavanje okolice v dinamičnem proizvodnem okolju. Algoritmi strojnega učenja ponujajo v kombinaciji z optičnimi senzorji (kamerami) možnost reševanja izjemno kompleksnih problemov, katerim so do sedaj bili kos le ljudje. Avtomatizacija procesov, pretok informacij med stroji in ljudmi ter pametna analiza podatkov s procesiranjem v oblaku, so le nekateri izzivi, ki jih naslavlja Industrija 4.0. Magistrsko delo predstavlja dinamičen sistem strojnega vida, ki ponuja rešitev na področju klasifikacije in lokalizacije poljubnih objektov v proizvodnih sistemih. Keywords: proizvodni sistemi, strojni vid, globoko učenje, industrija 4.0 Published in DKUM: 01.03.2019; Views: 1586; Downloads: 358
Full text (3,55 MB) |