1.
Prepoznavanje objektov iz satelitskih slik z metodami globokega učenja na vgrajeni napravi : diplomsko deloMartin Domajnko, 2021, undergraduate thesis
Abstract: V diplomskem delu rešujemo problem prepoznavanja prometa iz satelitskih slik. Cilj je bil uporabiti metode globokega učenja, pognati modele na izbranih vgrajenih napravah in doseči povprečno natančnost vsaj 75 % pri hitrosti izvajanja 5 sličic na sekundo. Za eksperiment uporabimo modela Faster R-CNN in SSD iz knjižnic Detectron2 ter TensorFlow Object Detection API. Fazi učenja in testiranja izvedemo na satelitskih slikah baze podatkov xView, katere predhodno razdelimo na učno in testno množico. Na učni množici izvedemo tudi bogatenje slik. Naučene modele preizkusimo na grafičnih karticah Nvidia GeForce GTX 970 ter Nvidia Titan X Pascal, na procesorju Intel Core i7-4790 in na vgrajenih napravah Intel Neural Compute Stick 2 ter Nvidia Jetson TX2. Preizkuse izvedemo s pomočjo skript napisanih v programskem jeziku Python3. Te izvozijo modele v posebno zamrznjeno stanje, jih optimizirajo za izvajanje na izbrani napravi in izmerijo njegovo hitrost ter natančnost. Najvišjo povprečno natančnost 37,33 % dosežemo z modelom Faster R-CNN iz knjižnice Detectron2. Z modelom SSD iz knjižnice TensorFlow Object Detection API na grafični kartici Nvidia GeForce GTX 970 dosežemo povprečno hitrost izvajanja 84,5 sličic na sekundo. Demonstrirana rešitev v diplomskem delu je primerna za izvajanje na vgrajenih napravah, a žal ni dovolj natančna. Za doseganje boljših rezultatov moramo našo rešitev izvajati na hitrejši strojni opremi, ki podpira večje ter s tem natančnejše modele.
Keywords: strojno učenje, globoko učenje, vgrajene naprave, prepoznavanje objektov, satelitske slike, računalniški vid
Published in DKUM: 18.10.2021; Views: 1013; Downloads: 115
Full text (34,13 MB)