1. Comparison study of four commercial SARS-CoV-2-rapid antigen tests : characterisation of the individual componentsŽiga Jelen, Ivan Anžel, Rebeka Rudolf, 2022, original scientific article Abstract: During the corona virus (COVID-19) pandemic, there was a sharp increase in the need for diagnostic tests that could detect the presence of SARS-CoV-2 virus or its antibodies quickly and reliably. An important type in the group of diagnostic tests are rapid antigen lateral flow immuno-assay (LFIA) tests, which operate on the immuno-chromatographic principle with the lateral flow of analyte. Clinical practice in the last year has shown that such diagnostic tests can be effective in preventing the spread of the SARS-CoV-2 virus.The development, and, thus, the production of the rapid antigen LFIA tests, is influenced by a number of factors that determine their sensitivity and accuracy indirectly. These factors are directly dependent on the type of antibody produced, which is formed as an immune response when infected with the virus. The production of the rapid antigen LFIA tests is associated with the appropriate selection of basic components that determine the type and quality of these tests. The basic components include: substrates and membranes, antigens, antibody labels and compatible buffers. The correct choice of membranes and their materials is crucial to compiling an effective rapid antigen LFIA test. This study therefore presents a comparative analysis of four commercially available SARS-CoV-2-rapid LFIA tests using state-of-the-art characterisation techniques scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectrometry (ICP-OES), environmental scanning electron microscope / energy-dispersive X-ray spectroscopy (ESEM/EDX), Fourier-transform infrared spectroscopy / attenuated total reflection (FTIR/ATR) for the individual components. The obtained results were the starting point for the development and assembling of our own rapid antigen LFIA test based on gold nanoparticles as antibody labels. Keywords: hitri antigenski testi, komponente, karakterizacija, analize, rapid antigen test, components, characterisation, analysis Published in DKUM: 26.03.2025; Views: 0; Downloads: 3
Link to full text This document has many files! More... |
2. Synthesis of complex concentrated nanoparticles by Ultrasonic Spray Pyrolysis and lyophilisationLidija Simić, Srečko Stopić, Bernd Friedrich, Matej Zadravec, Žiga Jelen, Rajko Bobovnik, Ivan Anžel, Rebeka Rudolf, 2022, original scientific article Abstract: The development of new multicomponent nanoparticles is gaining increasing importance
due to their specific functional properties, i.e., synthesised new complex concentrated nanoparticles
(CCNPs) in the form of powder using ultrasonic spray pyrolysis (USP) and lyophilisation from the
initial cast Ag20Pd20Pt20Cu20Ni20 alloy, which was in the function of the material after its catalytic
abilities had been exhausted. Hydrometallurgical treatment was used to dissolve the cast alloy,
from which the USP precursor was prepared. As a consequence of the incomplete dissolution of
the cast alloy and the formation of Pt and Ni complexes, it was found that the complete recycling
of the alloy is not possible. A microstructural examination of the synthesised CCNPs showed that
round and mostly spherical (not 100%) nanoparticles were formed, with an average diameter of
200 nm. Research has shown that CCNPs belong to the group with medium entropy characteristics.
A mechanism for the formation of CCNPs is proposed, based on the thermochemical analysis of
element reduction with the help of H2 and based on the mixing enthalpy of binary systems. Keywords: complex concentrated nanoparticles, ultrasonic spray pyrolysis, lyophilisation, characterization, formation mechanism Published in DKUM: 24.03.2025; Views: 0; Downloads: 2
Full text (9,27 MB) This document has many files! More... |
3. Cast microstructure of a complex concentrated noble alloy ▫$Ag_{20}Pd_{20}Pt_{20}Cu_{20}Ni_{20}▫$Lidija Simić, Rebeka Rudolf, Peter Majerič, Ivan Anžel, 2022, original scientific article Abstract: A complex concentrated noble alloy (CCNA) of equiatomic composition (Ag20Pd20Pt20Cu20Ni20
–20 at. %) was studied as a potential high—performance material. The equiatomic composition
was used so that this alloy could be classified in the subgroup of high—entropy alloys (HEA). The
alloy was prepared by induction melting at atmospheric pressure, using high purity elements. The
degree of metastability of the cast state was estimated on the basis of changes in the microstructure
during annealing at high temperatures in a protective atmosphere of argon. Characterisation of the
metallographically prepared samples was performed using a scanning electron microscope (SEM)
equipped with an energy dispersive spectrometer (EDS), differential scanning calorimetry (DSC),
and X–ray diffraction (XRD). Observation shows that the microstructure of the CCNA is in a very
metastable state and multiphase, consisting of a continuous base of dendritic solidification—a matrix
with an interdendritic region without other microstructural components and complex spheres. A
model of the probable flow of metastable solidification of the studied alloy was proposed, based on
the separation of L—melts into L1
(rich in Ni) and L2
(rich in Ag). The phenomenon of liquid phase
separation in the considered CCNA is based on the monotectic reaction in the Ag−Ni system. Keywords: complex concentrated noble alloy, high—entropy alloy, metastability Published in DKUM: 20.03.2025; Views: 0; Downloads: 7
Full text (4,00 MB) This document has many files! More... |
4. Oxidation behaviour of microstructurally highly metastable Ag-La alloyAndraž Jug, Mihael Brunčko, Rebeka Rudolf, Ivan Anžel, 2022, original scientific article Abstract: A new silver-based alloy with 2 wt.% of lanthanum (La) was studied as a potential candidate
for electric contact material. The alloy was prepared by rapid solidification, performed by the melt
spinning technique. Microstructural examination of the rapidly solidified ribbons revealed very fine
grains of αAg and intermetallic Ag5La particles, which appear in the volume of the grains, as well as
on the grain boundaries. Rapid solidification enabled high microstructural refinement and provided
a suitable starting microstructure for the subsequent internal oxidation, resulting in fine submicronsized La2O3 oxide nanoparticle formation throughout the volume of the silver matrix (αAg). The
resulting nanostructured Ag-La2O3 microstructure was characterised by high-resolution FESEM
and STEM, both equipped with EDX. High-temperature internal oxidation of the rapidly solidified
ribbons essentially changed the microstructure. Mostly homogeneously dispersed nano-sized La2O3
were formed within the grains, as well as on the grain boundaries. Three mechanisms of internal
oxidation were identified: (i) the oxidation of La from the solid solution; (ii) partial dissolution of
finer Ag5La particles before the internal oxidation front and oxidation of La from the solid solution;
and (iii) direct oxidation of coarser Ag5La intermetallic particles. Keywords: Ag-La alloy, rapid solidification, metastable microstructure, internal oxidation, characterisation, formation mechanism Published in DKUM: 20.03.2025; Views: 0; Downloads: 1
Full text (21,67 MB) This document has many files! More... |
5. Sodobni inženirski materialiIvan Anžel, Franc Zupanič, Mihael Brunčko, 2025, other educational material Abstract: Skripta, Sodobni inženirski materiali je kot temeljno študijsko gradivo namenjeno pervenstveno študentom 2. stopnje študijskih programov Strojništva, Gospodarskega inženirstva, Mehatronike in študentom Inženirsko oblikovanja izdelkov. Skripta je sestavljena iz treh poglavij: (i) Zgradba in izbira inženirskih materialov; (ii) Lastnosti inženirskih materialov; (iii) Primeri sodobnih inženirskih materialov. V prvem poglavju je obravnavana zgradba kovinskih, keramičnih, polimernih in kompozitnih materialov ter predstavljeni so kriteriji, ki omogočajo inženirjem glede na želeno kombinacijo lastnosti materialov, njihovo ustrezno izbiro za določeno aplikacijo. Drugo poglavje obravnava lastnosti sodobnih inženirskih materialov s poudarkom na poglobljenem študiju razlage korelacij med zgradbo, mikrostrukturo in lastnostmi. V zadnjem najobsežnejšem poglavju so predstavljeni izbrani primeri sodobnih inženirskih materialov, katerih uporaba e v industrijski praksi dandanes zelo aktualna. Če naštejemo samo najbolj zanimive: disperzijsko utrjeni materiali, spominske zlitine, konstrukcijska keramika, materiali za shranjevanje vodika, hitrostrjeni kovinski materiali, sodobne aluminijeve zlitine, biopolimeri in še mnogi drugi. Keywords: sodobni inženirski materiali, zgradba, izbira materialov, mikrostruktura, lastnosti Published in DKUM: 27.02.2025; Views: 0; Downloads: 750
Full text (22,61 MB) This document has many files! More... |
6. Comparative analysis of a 3D printed polymer bonded magnet composed of a TPU-PA12 matrix and Nd-Fe-B atomised powder and melt spun flakes respectivelyGranit Hajra, Mihael Brunčko, Leo Gusel, Ivan Anžel, 2025, original scientific article Abstract: The present study reports the development of new polymer bonded magnet containing a Thermoplastic Polyurethane (TPU) – Nylon (PA12) blend as the matrix material and Nd-Fe-B magnetic particles. Two composite materials were explored: one using Nd-Fe-B atomised spherical powder (ASP) and another incorporating Nd-Fe-B melt-spun flakes (MSF). The filaments were formulated by blending TPU, PA12, and one of selected type of Nd-Fe-B particles using a mixing device. The ASP and the MSF were integrated into the matrix via a precise compounding process and 3D printing was used to produce the testing specimens. The preliminary findings indicate that both formulations exhibited promising magnetic properties while maintaining the mechanical characteristics of TPU and PA12. The atomised spherical powder formulation demonstrated worse magnetic behaviour compared to the melt-spun flake formulation. ASP particles enable better fluidity of the composite material during 3D printing. However, the close-packed arrangement of these particles is the cause of much higher porosity and consequently the poorer mechanical and magnetic properties. Optimization of the processing parameters showed significant influence on the final magnetic performance and structural integrity of the printed specimens. Keywords: bonded magnets, Nd-Fe-B melt spun flakes, Nd-Fe-B atomised powders, material extrusion, additive manufacturing, fused specimen fabrication Published in DKUM: 08.01.2025; Views: 0; Downloads: 9
Full text (12,22 MB) This document has many files! More... |
7. The thermomechanical, functional and biocompatibility properties of a Au–Pt–Ge alloy for PFM dental restorationsPeter Majerič, Minja Miličić Lazić, Dijana Mitić, Marko Lazić, Ema Krdžović Lazić, Gyöngyi Vastag, Ivan Anžel, Vojkan Lazić, Rebeka Rudolf, 2024, original scientific article Abstract: A high-noble Au–Pt–Ge porcelain-fused-to-metal (PFM) dental alloy without the known adverse metallic elements and with the addition of germanium (Ge) was produced as a more cost-effective alternative to other precious alloying metals, with investigations for determining the functionality and clinical use of this alloy. The thermomechanical, biocompatibility, durability, workability and economic characteristics of the produced dental alloy were investigated. These properties were investigated with in vitro biocompatibility testing on human gingival fibroblasts (HGFs); static immersion testing for metal ion release; DSC analysis; hardness, tensile testing, density and coefficient of thermal expansion (CTE) measurements; metallographic and SEM/EDX microstructure investigations; and finally with the production of a test PFM dental bridge. The results of the thermomechanical testing showed alloy properties suitable for dental restorations and clinical use, with somewhat lower mechanical properties, making the alloy not suitable for extensive multiunit fixed restorations. The microstructure investigations showed segregations of Ge in the homogeneous alloy matrix, which reduce the alloy’s mechanical properties. The produced PFM dental bridge showed excellent workability of the alloy in a dental laboratory setting, as well as a high standard of the final dental restoration. The ion release was negligible, well below any harmful quantities, while the cell viability examination showed significantly higher viability ratings on polished alloy samples as compared to as-cast samples. The results showed that a dental substructure in direct contact with oral tissue and fluids should be highly polished. The performed investigations showed that the produced PFM dental alloy is suitable for clinical use in producing high-quality dental restorations with high biocompatibility for patients prone to metal allergies Keywords: noble metal dental alloys, metal–ceramic alloys, materials testing, biocompatibility testing Published in DKUM: 25.11.2024; Views: 0; Downloads: 8
Full text (11,75 MB) This document has many files! More... |
8. Evaluation of the impact and fracture toughness of a nanostructured bainitic steel with low retained austenite contentMihael Brunčko, Peter Kirbiš, Ivan Anžel, Leo Gusel, Darja Feizpour, Tomaž Irgolič, Tomaž Vuherer, 2023, original scientific article Abstract: The impact and fracture toughness of a nanostructured, kinetically activated bainitic steel was determined using Standard methods. Prior to testing, the steel was quenched in oil and aged naturally for a period of 10 days in order to obtain a fully bainitic microstructure with a retained austenite content below 1%, resulting in a high hardness of 62HRC. The high hardness originated from the very fine microstructure of bainitic ferrite plates formed at low temperatures. It was determined that the impact toughness of the steel in the fully aged condition improved remarkably, whereas the fracture toughness was in line with expectations based on the extrapolated data available in the literature. This suggests that a very fine microstructure is most beneficial to rapid loading conditions, whereas material flaws such as coarse nitrides and non-metallic inclusions are the major limitation for obtaining a high fracture toughness. Keywords: evaluation of fracture toughness, impact toughness, nanostructured bainite, natural aging, low retained austenite content, kinetically activated bainite KAB Published in DKUM: 16.02.2024; Views: 390; Downloads: 29
Link to full text This document has many files! More... |
9. Melting point of dried gold nanoparticles prepared with ultrasonic spray pyrolysis and lyophilisationŽiga Jelen, Marcin Krajewski, Franc Zupanič, Peter Majerič, Tilen Švarc, Ivan Anžel, Jernej Ekar, Sz-Chian Liou, Jerzy Kubacki, Mateusz Tokarczyk, Rebeka Rudolf, 2023, original scientific article Abstract: A coupled process of ultrasonic spray pyrolysis and lyophilisation was used for the synthesis of dried gold nanoparticles. Two methods were applied for determining their melting temperature: uniaxial microcompression and differential scanning calorimetry (DSC) analysis. Uniaxial microcompression resulted in sintering of the dried gold nanoparticles at room temperature with an activation energy of 26–32.5 J/g, which made it impossible to evaluate their melting point. Using DSC, the melting point of the dried gold nanoparticles was measured to be around 1064.3°C, which is close to pure gold. The reason for the absence of a melting point depression in dried gold nanoparticles was their exothermic sintering between 712 and 908.1°C. Keywords: gold nanoparticles, melting point, ultrasonic spray pyrolysis, characterisation Published in DKUM: 08.12.2023; Views: 448; Downloads: 32
Full text (2,83 MB) This document has many files! More... |
10. Konstrukcijski materiali : učbenikIvan Anžel, Mihael Brunčko, 2022, higher education textbook Abstract: Učbenik je kot osnovna literatura namenjen študentom 1. stopnje študijskih programov Strojništvo, Gospodarsko inženirstvo in Mehatronika. Učbenik sestavljajo tri samostojna poglavja, ki kot celota prinašajo znanja s področja materialov in tehnologij in so potrebna pri razvoju, raziskavah in uporabi materialov na področju strojništva, elektrotehnike, avtomatike, energetike ... Prvo poglavje obravnava značilne skupine konstrukcijskih materialov in njihovo zgradbo. Opisani so osnovni pojmi in predstave o materialih, ki so potrebne za razumevanje njihovih lastnosti. V drugem poglavju so obravnavane ključne lastnosti konstrukcijskih materialov, ki omogočajo uspešno izbiro materialov za določeno aplikacijo. Tretje poglavje vsebuje izbrane primere konstrukcijskih materialov. Opisuje posebna jekla za uporabo v strojništvu, lahke zlitine, konstrukcijsko keramiko, keramična stekla in polimerne materiale. Keywords: konstrukcijski materiali, posebna jekla, lahke zlitine, inženirska keramika in stekla, polimerni materiali Published in DKUM: 23.02.2022; Views: 1528; Downloads: 315
Full text (25,86 MB) This document has many files! More... |