1. The impact of temperature and the duration of freezing on a hydrogel used for a 3d-bioprinted in vitro skin modelMaja Sever, Dominik Škrinjar, Tina Maver, Monika Belak, Franc Zupanič, Ivan Anžel, Tanja Zidarič, 2024, original scientific article Abstract: Skin bioprinting has the potential to revolutionize treatment approaches for injuries and surgical procedures, while also providing a valuable platform for assessing and screening cosmetic and pharmaceutical products. This technology offers key advantages, including flexibility and reproducibility, which enable the creation of complex, multilayered scaffolds that closely mimic the intricate microenvironment of native skin tissue. The development of an ideal hydrogel is critical for the successful bioprinting of these scaffolds with incorporated cells. In this study, we used a hydrogel formulation developed in our laboratory to fabricate a 3D-bioprinted skin model. The hydrogel composition was carefully selected based on its high compatibility with human skin cells, incorporating alginate, methyl cellulose, and nanofibrillated cellulose. One of the critical challenges in this process, particularly for its commercialization and large-scale production, is ensuring consistency with minimal batch-to-batch variations. To address this, we explored methods with which to preserve the physicochemical properties of the hydrogels, with a focus on freezing techniques. We validated the pre-frozen hydrogels’ printability, rheology, and mechanical and surface properties. Our results revealed that extended freezing times significantly reduced the viscosity of the formulations due to ice crystal formation, leading to a redistribution of the polymer chains. This reduction in viscosity resulted in a more challenging extrusion and increased macro- and microporosity of the hydrogels, as confirmed by nanoCT imaging. The increased porosity led to greater water uptake, swelling, compromised scaffold integrity, and altered degradation kinetics. The insights gained from this study lay a solid foundation for advancing the development of an in vitro skin model with promising applications in preclinical and clinical research. Keywords: in vitro skin model, 3D printing, hydrogels, preclinical and clinical medicine Published in DKUM: 28.07.2025; Views: 0; Downloads: 4
Full text (4,94 MB) This document has many files! More... |
2. Microstructural analysis of the cast and melt-spun high entropy noble alloy ▫$Ag_{20}Pd_{20}Pt_{20}Cu_{20}Ni_{20}$▫Lidija Simić, Albert C. Kneissl, Ivan Anžel, 2024, original scientific article Abstract: High entropy alloys (HEA) represent a relatively new class of materials with promising properties for various applications. In recent years, these alloys have received considerable attention as potential heterogeneous catalysts in chemical and electrochemical reactions. Their enhanced catalytic activity is controlled by chemical composition, surface atomic coordination, electronic configuration and degree of microstructural metastability. Single-phase HEAs are of particular importance, because they possess a uniform microstructure that is useful for designing and prediction of mechanical and potential functional properties. The cooling rate has a significant impact on the formation of the microstructure, affecting the size of grains, as well as distribution and composition of precipitates and phases that are being formed during solidification. The influence of different cooling rates on the microstructure of the alloy Ag20Pd20Pt20Cu20Ni20 was studied in our research work. The microstructure and phase constituents were characterised by Scanning Electron Microscopy and X-ray Diffraction. Liquid phase separation with a consequential monotectic reaction resulted in an anomalous multiphase cast microstructure. With an increase in the cooling rate using the melt spinning technique, the number of formed phases and the size of the grains decreased and the high entropy supersaturated solid solution was attained, as the atoms in the alloy did not have enough time to diffuse and to rearrange themselves into a stable, ordered structure. It was also confirmed that higher cooling rates cause severe lattice distortion and create coordinatively unsaturated sites at the surface which are essential for the bonding and activation of the reactants and therefore improve the potential catalytic properties of the Ag20Pd20Pt20Cu20Ni20 alloy significantly. Keywords: high entropy noble alloy, solidification, microstructure, metastability Published in DKUM: 22.07.2025; Views: 0; Downloads: 5
Full text (1,34 MB) This document has many files! More... |
3. Characterization of microstructure and magnetic properties of 3D printed bonded magnets made by fused deposition modelingMihael Brunčko, Albert C. Kneissl, Lovro Gorše, Ivan Anžel, 2024, original scientific article Abstract: Bonded magnets are composite materials consisting of polymer matrix and magnetic powders, prepared by rapid solidification processes from Nd-Fe-B alloys. They are synthesised by the compounding process on a twin-screw extruder, whereby, the finished products of complex shapes can be made from bonded magnets using injection moulding or 3D printing by fused deposition modelling method (FDM). The main advantages of 3D printing are the possibility to produce parts with complex geometries that are not possible with traditional manufacturing techniques and low-cost production of small batches. The aim of the research work was to identify the optimum processing parameters, which would give 3D printed bonded magnets characteristics similar to those produced by injection moulding. The characterization of the microstructure of bonded magnets was made on cryo-fractured, conventionally mechanically prepared and ion beam polished samples. The microstructures of bonded magnets were analysed by stereo, optical and scanning electron microscopy. Additionally, the influence of the 3D printing parameters on the magnetic properties has been examined. The results of the research work have shown that desired magnetic properties of 3D printed bonded magnets can be obtained by optimizing the thickness of the printed layer, printing speed and flowrate. In addition, it was revealed that selection of the materialographic preparation method plays a crucial step for correct microstructural characterization. Namely, the impropriate sample preparation results in artifacts that are mostly misinterpreted as microstructural defects (pores, cracks, non-adherent layers, etc.) accidently caused during 3D printing. Keywords: bonded magnets, fused deposition modelling, microstructure, Ion beam polishing Published in DKUM: 03.07.2025; Views: 0; Downloads: 2
Full text (4,08 MB) This document has many files! More... |
4. Nekovinski materialiIvan Anžel, Franc Zupanič, Mihael Brunčko, 2025 Abstract: V skripti Nekovinska gradiva bodo študenti spoznali ključne vidike pomena nekovinskih materialov v sodobnem inženirstvu. Ti materiali so danes v številnih panogah postali nepogrešljivi pri načrtovanju in izdelavi izdelkov, v nekaterih primerih pa že povsem nadomeščajo kovine in zlitine. Kombinacija njihovih edinstvenih lastnosti omogoča razvoj tehnološko naprednih rešitev, ki so hkrati energetsko učinkovite in prijazne do okolja. S študijskim gradivom Nekovinski materiali bodo študenti pridobili poglobljeno razumevanje o zgradbi, lastnostih in tehnologijah izdelave polimernih, keramičnih in kompozitnih materialov. Keywords: nekovinski materiali, polimeri, keramika, kompoziti, zgradba, lastnosti Published in DKUM: 10.06.2025; Views: 0; Downloads: 14
Full text (17,25 MB) This document has many files! More... |
5. Spatiotemporal analysis and physicochemical profiling of ▫$PM_10$▫ and ▫$PM_2.5$ ▫ in SloveniaMaja Ivanovski, Ivan Anžel, Darko Goričanec, Danijela Urbancl, 2025, original scientific article Abstract: Particulate matter (PM10 and PM2.5) is a key contributor to urban air pollution and poses significant health risks, particularly in densely populated areas. While conventional air quality monitoring focuses on particle size and concentration, this study emphasizes the importance of understanding chemical composition and emission sources for effective air pollution management. PM samples were collected between 2019 and 2022 at two locations in the Republic of Slovenia: a traffic-dominated urban site and an industrial area. Annual average PM10 concentrations ranged from 14 to 34 μg/m3, and those of PM2.5 ranged from 9 to 22 μg/m3. In addition to decreasing annual concentrations, a notable reduction in exceedance days was observed between 2019 and 2022, indicating the effectiveness of recent air quality improvement measures. Meteorological data and statistical models were used to assess environmental influences on PM variability. Advanced SEM-EDS analysis revealed substantial seasonal and spatial differences in particle composition, with key elements such as silicon (4.3–28.4%), carbon (13.1–61.7%), and trace amounts of lead and zinc varying across sites and particle types. Mineral dust (Si, Al, Ca, Fe, Mg), originating from soil resuspension, construction, and Saharan dust, was dominant. Combustion-related particles containing C, Pb, Zn, and Fe oxides were associated with vehicle emissions, industrial processes, and biomass burning. Secondary aerosols, such as sulphates and nitrates, showed seasonal trends, with higher concentrations in summer and winter, respectively. The results confirm that PM levels are driven by complex interactions between local emissions, weather conditions, and seasonal dynamics. The study supports targeted policy measures, particularly regarding residential heating and traffic emissions, to improve air quality. Keywords: air pollution, air quality, PM particles, SEM-EDS, Slovenia Published in DKUM: 30.05.2025; Views: 0; Downloads: 5
Full text (4,02 MB) |
6. New approach for adsorptive removal of the antibiotic ciprofloxacin: carboxymethyl-dextran-functionalised magnetic iron oxide nanomaterialsErik Mihelič, Lidija Fras Zemljič, Marjana Simonič, Sašo Gyergyek, Alenka Vesel, Silvo Hribernik, Matej Bračič, Ivan Anžel, Olivija Plohl, 2025, original scientific article Abstract: Antibiotic residues in environmental media pose a significant health, social and economic problem and require effective removal strategies. This study presents a novel approach for the removal of the antibiotic ciprofloxacin from water sources using magnetic iron oxide nanoparticles (MNPs) synthesised by co-precipitation, and subsequently functionalised with the polysaccharide carboxymethyl-dextran (CMD). The prepared nanoadsorbent was characterised extensively by various physicochemical analyses, to evaluate its morphology, crystal structure, surface chemistry, electrokinetic properties, thermogravimetric properties and magnetic features. These analyses confirmed the successful functionalisation of the MNPs with CMD highlighting its potential for effective adsorption applications. The stability of CMD coating on MNPs was evaluated in terms of total carbon content, an important, yet often overlooked factor. The adsorption performance of MNPs@CMD for ciprofloxacin was investigated systematically by studying the effects of adsorbent dosage, pH, initial ciprofloxacin concentration, ionic strength, adsorption time and kinetics, temperature, and reusability. Under optimal conditions, nanoadsorbent exhibited a satisfactory maximum adsorption capacity of 14.71 mg/g, and maintained a removal eff iciency of 79 % after four cycles, with minimal desorption of CMD layer on the MNPs. These findings demonstrate the potential of this magnetic polysaccharide nanoadsorbent for effective removal of ciprofloxacin from aqueous environments, enabling magnetic recovery and reuse. Keywords: Carboxymethyl-dextran-MNPs, ciprofloxacin, adsorption Published in DKUM: 26.05.2025; Views: 0; Downloads: 17
Full text (10,76 MB) This document has many files! More... |
7. Comparison study of four commercial SARS-CoV-2-rapid antigen tests : characterisation of the individual componentsŽiga Jelen, Ivan Anžel, Rebeka Rudolf, 2022, original scientific article Abstract: During the corona virus (COVID-19) pandemic, there was a sharp increase in the need for diagnostic tests that could detect the presence of SARS-CoV-2 virus or its antibodies quickly and reliably. An important type in the group of diagnostic tests are rapid antigen lateral flow immuno-assay (LFIA) tests, which operate on the immuno-chromatographic principle with the lateral flow of analyte. Clinical practice in the last year has shown that such diagnostic tests can be effective in preventing the spread of the SARS-CoV-2 virus.The development, and, thus, the production of the rapid antigen LFIA tests, is influenced by a number of factors that determine their sensitivity and accuracy indirectly. These factors are directly dependent on the type of antibody produced, which is formed as an immune response when infected with the virus. The production of the rapid antigen LFIA tests is associated with the appropriate selection of basic components that determine the type and quality of these tests. The basic components include: substrates and membranes, antigens, antibody labels and compatible buffers. The correct choice of membranes and their materials is crucial to compiling an effective rapid antigen LFIA test. This study therefore presents a comparative analysis of four commercially available SARS-CoV-2-rapid LFIA tests using state-of-the-art characterisation techniques scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectrometry (ICP-OES), environmental scanning electron microscope / energy-dispersive X-ray spectroscopy (ESEM/EDX), Fourier-transform infrared spectroscopy / attenuated total reflection (FTIR/ATR) for the individual components. The obtained results were the starting point for the development and assembling of our own rapid antigen LFIA test based on gold nanoparticles as antibody labels. Keywords: hitri antigenski testi, komponente, karakterizacija, analize, rapid antigen test, components, characterisation, analysis Published in DKUM: 26.03.2025; Views: 0; Downloads: 5
Link to full text This document has many files! More... |
8. Synthesis of complex concentrated nanoparticles by Ultrasonic Spray Pyrolysis and lyophilisationLidija Simić, Srečko Stopić, Bernd Friedrich, Matej Zadravec, Žiga Jelen, Rajko Bobovnik, Ivan Anžel, Rebeka Rudolf, 2022, original scientific article Abstract: The development of new multicomponent nanoparticles is gaining increasing importance
due to their specific functional properties, i.e., synthesised new complex concentrated nanoparticles
(CCNPs) in the form of powder using ultrasonic spray pyrolysis (USP) and lyophilisation from the
initial cast Ag20Pd20Pt20Cu20Ni20 alloy, which was in the function of the material after its catalytic
abilities had been exhausted. Hydrometallurgical treatment was used to dissolve the cast alloy,
from which the USP precursor was prepared. As a consequence of the incomplete dissolution of
the cast alloy and the formation of Pt and Ni complexes, it was found that the complete recycling
of the alloy is not possible. A microstructural examination of the synthesised CCNPs showed that
round and mostly spherical (not 100%) nanoparticles were formed, with an average diameter of
200 nm. Research has shown that CCNPs belong to the group with medium entropy characteristics.
A mechanism for the formation of CCNPs is proposed, based on the thermochemical analysis of
element reduction with the help of H2 and based on the mixing enthalpy of binary systems. Keywords: complex concentrated nanoparticles, ultrasonic spray pyrolysis, lyophilisation, characterization, formation mechanism Published in DKUM: 24.03.2025; Views: 0; Downloads: 7
Full text (9,27 MB) This document has many files! More... |
9. Cast microstructure of a complex concentrated noble alloy ▫$Ag_{20}Pd_{20}Pt_{20}Cu_{20}Ni_{20}▫$Lidija Simić, Rebeka Rudolf, Peter Majerič, Ivan Anžel, 2022, original scientific article Abstract: A complex concentrated noble alloy (CCNA) of equiatomic composition (Ag20Pd20Pt20Cu20Ni20
–20 at. %) was studied as a potential high—performance material. The equiatomic composition
was used so that this alloy could be classified in the subgroup of high—entropy alloys (HEA). The
alloy was prepared by induction melting at atmospheric pressure, using high purity elements. The
degree of metastability of the cast state was estimated on the basis of changes in the microstructure
during annealing at high temperatures in a protective atmosphere of argon. Characterisation of the
metallographically prepared samples was performed using a scanning electron microscope (SEM)
equipped with an energy dispersive spectrometer (EDS), differential scanning calorimetry (DSC),
and X–ray diffraction (XRD). Observation shows that the microstructure of the CCNA is in a very
metastable state and multiphase, consisting of a continuous base of dendritic solidification—a matrix
with an interdendritic region without other microstructural components and complex spheres. A
model of the probable flow of metastable solidification of the studied alloy was proposed, based on
the separation of L—melts into L1
(rich in Ni) and L2
(rich in Ag). The phenomenon of liquid phase
separation in the considered CCNA is based on the monotectic reaction in the Ag−Ni system. Keywords: complex concentrated noble alloy, high—entropy alloy, metastability Published in DKUM: 20.03.2025; Views: 0; Downloads: 12
Full text (4,00 MB) This document has many files! More... |
10. Oxidation behaviour of microstructurally highly metastable Ag-La alloyAndraž Jug, Mihael Brunčko, Rebeka Rudolf, Ivan Anžel, 2022, original scientific article Abstract: A new silver-based alloy with 2 wt.% of lanthanum (La) was studied as a potential candidate
for electric contact material. The alloy was prepared by rapid solidification, performed by the melt
spinning technique. Microstructural examination of the rapidly solidified ribbons revealed very fine
grains of αAg and intermetallic Ag5La particles, which appear in the volume of the grains, as well as
on the grain boundaries. Rapid solidification enabled high microstructural refinement and provided
a suitable starting microstructure for the subsequent internal oxidation, resulting in fine submicronsized La2O3 oxide nanoparticle formation throughout the volume of the silver matrix (αAg). The
resulting nanostructured Ag-La2O3 microstructure was characterised by high-resolution FESEM
and STEM, both equipped with EDX. High-temperature internal oxidation of the rapidly solidified
ribbons essentially changed the microstructure. Mostly homogeneously dispersed nano-sized La2O3
were formed within the grains, as well as on the grain boundaries. Three mechanisms of internal
oxidation were identified: (i) the oxidation of La from the solid solution; (ii) partial dissolution of
finer Ag5La particles before the internal oxidation front and oxidation of La from the solid solution;
and (iii) direct oxidation of coarser Ag5La intermetallic particles. Keywords: Ag-La alloy, rapid solidification, metastable microstructure, internal oxidation, characterisation, formation mechanism Published in DKUM: 20.03.2025; Views: 0; Downloads: 5
Full text (21,67 MB) This document has many files! More... |