| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Comparing algorithms for predictive data analytics : magistrsko delo
Goran Kirov, 2024, master's thesis

Abstract: The master’s degree thesis is composed of theoretical and practical parts. The theoretical part describes the basics of predictive data analytics and machine learning algorithms for classification such as Logistic Regression, Decision Tree, Random Forest, SVM, and KNN. We also describe different evaluation metrics such as Recall, Precision, Accuracy, F1 Score, Cohen’s Kappa, Hamming Loss, and Jaccard Index that are used to measure the performance of these algorithms. Additionally, we record the time taken for the training and prediction processes to provide insights into algorithm scalability. The key part master’s thesis is the practical part that compares these algorithms with a self-implemented tool that shows results for different evaluation metrics on seven datasets. First, we describe the implementation of an application for testing where we measure evaluation metrics scores. We tested these algorithms on all seven datasets using Python libraries such as scikit-learn. Finally, w
Keywords: data analytics, machine learning, classification, evaluation metrics
Published in DKUM: 15.01.2025; Views: 0; Downloads: 74
.pdf Full text (2,68 MB)

2.
Primerjava podatkovnih baz iz vidika shranjevanja dokumentov JSON : zaključno delo
Goran Kirov, 2021, undergraduate thesis

Abstract: Diplomsko delo je sestavljeno iz teoretičnega in praktičnega dela. Najprej so opisane osnove relacijskih in nerelacijskih podatkovnih baz, nato pa njihovi najbolj znani predstavniki. Nato sledi razlaga formata za izmenjavo podatkov JSON in dela z njim v podatkovnih bazah (ustvarjanje, branje, posodabljanje, brisanje podatkov). Ključni del diplomske naloge je praktično delo, kjer smo merili in analizirali podatkovne baze pri shranjevanju dokumentov JSON. Najprej opišemo implementacijo aplikacije za samodejno testiranje, kjer merimo čas in porabo pomnilnika. Testiranje je bilo izvedeno nad manjšimi in večjimi dokumenti. Testirali smo podatkovne baze MySQL, PostgreSQL in MongoDB. Na koncu analiziramo dobljene rezultate in podamo zaključne ugotovitve.
Keywords: JSON, SQL, NoSQL, podatkovna baza
Published in DKUM: 18.10.2021; Views: 1408; Downloads: 155
.pdf Full text (1,27 MB)

Search done in 0.03 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica