| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 82
First pagePrevious page123456789Next pageLast page
1.
Microstructure and indentation properties of single-roll and twin-roll casting of a quasicrystal-forming Al-Mn-Cu-Be alloy
Franc Zupanič, Matjaž Macerl, Toshio Haga, Tonica Bončina, 2022, original scientific article

Abstract: In this investigation, strips of an experimental Al-Mn-Cu-Be alloy were manufactured by high-speed single-roll and twin-roll casting to stimulate the formation of a quasicrystalline phase during solidification. The strips were characterised by light microscopy, scanning and transmission electron microscopy, microchemical analysis, and X-ray diffraction. Indentation testing was used to determine the mechanical responses of the strips in different areas. A smooth surface was achieved on both sides of the twin-roll-cast strip, while the free surface of the single-roll-cast strip was rough. The microstructures in both strips consisted of an Al-rich solid solution matrix embedding several intermetallic phases Θ-Al2Cu, Be4Al (Mn, Cu), Al15Mn3Be2 and icosahedral quasicrystalline phase (IQC). The microstructure of the single-roll-cast strip was more uniform than that of the twin-roll-cast strip. Coarse Al15Mn3Be2 particles appeared in both alloys, especially at the centre of the twinroll strip. These coarse particles adversely affected the strength and ductility. Nevertheless, both casting methods provided high-cooling rates, enabling the formation of metastable phases, such as quasicrystals. However, improvements in alloy composition and casting procedure are required to obtain enhanced microstructures and properties.
Keywords: single-roll casting, twin roll casting, microstructure, quasicrystal, hardness, aluminium, characterisation
Published in DKUM: 24.03.2025; Views: 0; Downloads: 2
.pdf Full text (10,68 MB)
This document has many files! More...

2.
Microstructure and surface topography study of nanolayered TiAlN/CrN hard coating
Peter Panjan, Peter Gselman, Matjaž Panjan, Tonica Bončina, Aljaž Drnovšek, Mihaela Albu, Miha Čekada, Franc Zupanič, 2022, original scientific article

Abstract: The microstructure and surface topography of PVD hard coatings are among the most important properties, as they significantly determine their mechanical, tribological and other properties. In this study, we systematically analyzed the microstructure and topography of a TiAlN/CrN nanolayer coating (NL-TiAlN/CrN), not only because such coatings possess better mechanical and tribological properties than TiAlN and CrN monolayer coatings, mainly because the contours of the individual layers, in the cross-sectional STEM or SEM images of such coatings, make it easier to follow topographic and microstructural changes that occurred during its growth. We investigated the effects of the substrate rotation modes on the microstructure and surface topography of the NL-TiAlN/CrN coating, as well as on the periodicity of the nanolayer structure. The influence of the substrate material and the ion etching methods were also studied, while special attention was given to the interlayer roughness and influence of non-metallic inclusions in the steel substrates on the growth of the coating. The topographical features of the NL-TiAlN/CrN coating surface are correlated with the observations from the cross-sectional TEM and FIB analysis. Selected non-metallic inclusions, covered by the NL-TiAlN/CrN coating, were prepared for SEM and STEM analyses by the focused ion beam. The same inclusions were analyzed prior to and after deposition. We found that substrate rotation modes substantially influence the microstructure, surface topography and periodicity of the NL-TiAlN/CrN layer. Non-metallic inclusions in the substrates cause the formation of shallow craters or protrusions, depending on their net removal rates during the substrate pretreatment (polishing and ion etching), as compared to the matrix.
Keywords: magnetron sputtering, nanolayer hard coatings, growth defects, surface topography, interlayer roughness, non-metallic inclusion, focused ion beam (FIB), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM)
Published in DKUM: 19.03.2025; Views: 0; Downloads: 3
.pdf Full text (6,54 MB)
This document has many files! More...

3.
Sodobni inženirski materiali
Ivan Anžel, Franc Zupanič, Mihael Brunčko, 2025, other educational material

Abstract: Skripta, Sodobni inženirski materiali je kot temeljno študijsko gradivo namenjeno pervenstveno študentom 2. stopnje študijskih programov Strojništva, Gospodarskega inženirstva, Mehatronike in študentom Inženirsko oblikovanja izdelkov. Skripta je sestavljena iz treh poglavij: (i) Zgradba in izbira inženirskih materialov; (ii) Lastnosti inženirskih materialov; (iii) Primeri sodobnih inženirskih materialov. V prvem poglavju je obravnavana zgradba kovinskih, keramičnih, polimernih in kompozitnih materialov ter predstavljeni so kriteriji, ki omogočajo inženirjem glede na želeno kombinacijo lastnosti materialov, njihovo ustrezno izbiro za določeno aplikacijo. Drugo poglavje obravnava lastnosti sodobnih inženirskih materialov s poudarkom na poglobljenem študiju razlage korelacij med zgradbo, mikrostrukturo in lastnostmi. V zadnjem najobsežnejšem poglavju so predstavljeni izbrani primeri sodobnih inženirskih materialov, katerih uporaba e v industrijski praksi dandanes zelo aktualna. Če naštejemo samo najbolj zanimive: disperzijsko utrjeni materiali, spominske zlitine, konstrukcijska keramika, materiali za shranjevanje vodika, hitrostrjeni kovinski materiali, sodobne aluminijeve zlitine, biopolimeri in še mnogi drugi.
Keywords: sodobni inženirski materiali, zgradba, izbira materialov, mikrostruktura, lastnosti
Published in DKUM: 27.02.2025; Views: 0; Downloads: 749
.pdf Full text (22,61 MB)
This document has many files! More...

4.
5.
High-cycle fatigue behaviour of the aluminium alloy 5083-H111
Branko Nečemer, Franc Zupanič, Tomaž Vuherer, Srečko Glodež, 2023, original scientific article

Keywords: aluminium alloys, rolling direction, high-cycle fatigue, fracture analysis
Published in DKUM: 04.04.2024; Views: 183; Downloads: 18
.pdf Full text (8,97 MB)
This document has many files! More...

6.
Microstructure, mechanical properties and fatigue behaviour of a new high-strength aluminium alloy AA 6086
Franc Zupanič, Jernej Klemenc, Matej Steinacher, Srečko Glodež, 2023, original scientific article

Abstract: This study presents the comprehensive experimental investigation of the microstructure, mechanical and fatigue properties of a new high-strength aluminium alloy AA 6086, which was developed from a commercial aluminium alloy AA 6082. The new alloy possesses a higher content of Si, and, it also contains Cu and Zr. The alloy was characterised in the as-cast condition after homogenisation, extrusion, and T6 heat treatment. Light microscopy, scanning and transmission electron microscopy with energy dispersive spectrometry were used to analyse the microstructure and the fractography of broken specimens. The quasi-static and fatigue tests were performed on the MTS Landmark 100 kN servo-hydraulic test machine, controlled with a mechanical extensometer with a 25 mm gauge length. The quasi-static strength of the analysed aluminium alloy AA 6086 was found to be significantly higher if compared to some other AA 6xxx alloys, while the ductility was kept almost the same. The experimental results of the comprehensive fatigue tests in a Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) regime showed a good fatigue resistance, and represent a good basis for engineering design applications of the newly developed aluminium alloy AA 6086.
Keywords: aluminijeve zlitine, karakterizacija materiala, utrujanje, eksperimentalno testiranje, statistično ovrednotenje, Aluminium Alloy AA 6086, material characterisation, fatigue behaviour, experimental testing, statistical evaluation
Published in DKUM: 02.04.2024; Views: 281; Downloads: 29
URL Link to full text
This document has many files! More...

7.
LCF behaviour of high strength aluminium alloys AA 6110A and AA 6086
Jernej Klemenc, Srečko Glodež, Matej Steinacher, Franc Zupanič, 2023, original scientific article

Abstract: The proposed research presents the comprehensive investigation of the Low Cycle Fatigue (LCF) behaviour of two high-strength aluminium alloys of series AA 6xxx: the conventional alloy AA 6110A and the newly developed alloy AA 6086. Both alloys were characterised in the as-cast condition after homogenisation, extrusion, and T6 heat treatment. The quasi-static strength and hardness of the aluminium alloy AA 6086 were found to be significantly higher if compared to the AA 6110A alloys, while the ductility was a little bit smaller. The LCF tests showed that the AA 6086 alloy is more suitable for the high-cycle fatigue regime. On the other hand, the engineering advantage of the AA 6110A alloy is only for low-cycle fatigue applications if less than 100 loading cycles are expected in the service life of the analysed structure. The fatigue cracks formed predominantly on the α-AlMnSi intermetallic particles in both alloys, and, during LCF tests, exhibited small crack propagation. The area of the fatigue crack growth was much smaller than the area of the forced fracture. At smaller amplitude strains the fatigue striations were present at the fracture surface, while, at higher amplitude strains, they were not present. The obtained experimental results represent a good basis for engineering design applications of the analysed alloys AA 6086 and AA 6110A.
Keywords: aluminijeve zlitine, malociklično utrujanje, eksperimentalno testiranje, fraktografija, aluminium alloys, low cycle fatigue, experimental testing, fractography
Published in DKUM: 29.03.2024; Views: 197; Downloads: 15
URL Link to full text
This document has many files! More...

8.
Comprehensive analysis of different coating materials on the POM substrate
Tonica Bončina, Srečko Glodež, Brigita Polanec, Lara Hočuršćak, Franc Zupanič, 2023, original scientific article

Abstract: This study presents a comprehensive analysis of different coating materials on the POM substrate. Specifically, it investigated physical vapour deposition (PVD) coatings of aluminium (Al), chromium (Cr), and chromium nitride (CrN) of three various thicknesses. The deposition of Al was accomplished through a three-step process, particularly plasma activation, metallisation of Al by magnetron sputtering, and plasma polymerisation. The deposition of Cr was attained using the magnetron sputtering technique in a single step. For the deposition of CrN, a two-step process was employed. The first step involved the metallisation of Cr using magnetron sputtering, while the second step involved the vapour deposition of CrN, obtained through the reactive metallisation of Cr and nitrogen using magnetron sputtering. The focus of the research was to conduct comprehensive indentation tests to obtain the surface hardness of the analysed multilayer coatings, SEM analyses to examine surface morphology, and thorough adhesion analyses between the POM substrate and the appropriate PVD coating.
Keywords: POM, PVD coating, metal coating, adhesion analyses, indentation tests
Published in DKUM: 15.02.2024; Views: 304; Downloads: 38
.pdf Full text (3,25 MB)
This document has many files! More...

9.
Melting point of dried gold nanoparticles prepared with ultrasonic spray pyrolysis and lyophilisation
Žiga Jelen, Marcin Krajewski, Franc Zupanič, Peter Majerič, Tilen Švarc, Ivan Anžel, Jernej Ekar, Sz-Chian Liou, Jerzy Kubacki, Mateusz Tokarczyk, Rebeka Rudolf, 2023, original scientific article

Abstract: A coupled process of ultrasonic spray pyrolysis and lyophilisation was used for the synthesis of dried gold nanoparticles. Two methods were applied for determining their melting temperature: uniaxial microcompression and differential scanning calorimetry (DSC) analysis. Uniaxial microcompression resulted in sintering of the dried gold nanoparticles at room temperature with an activation energy of 26–32.5 J/g, which made it impossible to evaluate their melting point. Using DSC, the melting point of the dried gold nanoparticles was measured to be around 1064.3°C, which is close to pure gold. The reason for the absence of a melting point depression in dried gold nanoparticles was their exothermic sintering between 712 and 908.1°C.
Keywords: gold nanoparticles, melting point, ultrasonic spray pyrolysis, characterisation
Published in DKUM: 08.12.2023; Views: 448; Downloads: 32
.pdf Full text (2,83 MB)
This document has many files! More...

10.
Wear Behaviour of Multilayer Al-PVD-Coated Polymer Gears
Tonica Bončina, Brigita Polanec, Franc Zupanič, Srečko Glodež, 2022, original scientific article

Abstract: A comprehensive experimental investigation of the wear behaviour of coated spur polymer gears made of POM is performed in this study. Three different thicknesses of aluminium (Al) coatings were investigated and deposited by the Physical Vapour Deposition (PVD) process. The Al coating was deposited in three steps: By plasma activation, metallisation of the aluminium by the magnetron sputtering process, and plasma polymerisation. The wear of the gears was tested on an in-house developed testing rig for different torques (16, 20, and 24 Nm) and a rotational speed of 1000 rpm. The duration of the experiments was set to 13 h, when the tooth thickness and, consequently, the wear of the tooth flank were recorded. The experimental results showed that the influence of metallisation with aluminium surface coatings on the wear behaviour of the analysed polymer gear is not significantly important. The results also showed that the gears with a thicker aluminium coating showed greater wear than gears with a thinner coating or even without a coating. This is probably due to the fact that the aluminium particles that started to deviate during gear operation represented the abrasive material, which led to the faster wear of the contacting surfaces of the meshing gear flanks.
Keywords: polymer gears, aluminium PVD coating, Physical Vapour Deposition process, multilayer coating, wear
Published in DKUM: 15.11.2022; Views: 580; Downloads: 431
.pdf Full text (13,01 MB)
This document has many files! More...

Search done in 0.18 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica