1.
Experimental analysis of cavitation erosion in a particle-laden flowFilip Jovanovski, 2023, undergraduate thesis
Abstract: Cavitation erosion is a problem that presents a challenge for the engineers in different industries, as it erodes the machinery which leads to lower efficiency and higher maintanance costs. An experimental investigation has been conducted to evaluate cavitation and cavitation erosion with and without the presence of solid particles in a Venturi channel. The methodology is based on observing and analysing the evolution of the vapour structures and occurence of cavitation erosion on the sample surface in the Venturi channel. To conduct experiments the cavitation tunnel was used, with the central component being a transparent test section with a Venturi-like channel (constructed from Plexiglass walls and a metal insert) to monitor the process of cavitation. To detect the damage caused by cavitation erosion and abrasion, the most effective solution was found to be an indicator in the form of black acrylic paint thinned with water (at a ratio of 1:2). On the sample surface, a self-adhesive aluminium tape was applied to protect the aluminium base from erosive characteristics from cavitation Furthermore, a comparison between cavitation with and without solid particles was made to determine the effects of solid particles on both cavitation and abrasion of the sample surface. The observation revealed that no matter the solid particles, damage from cavitation erosion appears at the separation point and in proximity to the location of the detached cloud collapse. The spherical glass particles with diameters between 40 µm and 70 µm added an abrasive effect on the sample surface only in the presence of cavitation structures. It was determined, that the intensity of cavitation erosion and abrasion increases when the cavitation number decreases and volumetric flow rate increases. Also, an economic analysis was conducted, to determine which is the more cost beneficial solution between replacement of the metal insert and application of protective coatings over the metal insert.
Keywords: cavitation erosion, solid particles, abrasion, experiment
Published in DKUM: 28.02.2024; Views: 230; Downloads: 32
Full text (3,93 MB)