| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
The development of a “drive-in” filters dewatering system in the Velenje coal mine using finite-element modelling
Goran Vižintin, Miran Veselič, Andrej Bombač, Evgen Dervarič, Jakob Likar, Đorđe Vukelič, 2009, original scientific article

Abstract: During the mining operations at the Velenje coal mine, groundwater has been presenting a constant threat to underground works. The hydrogeological setup is so complex that a lot of structural drilling and well-logging operations were needed in the past to clarify it. Above the lignite seam is a Pliocene and Pleisticene multilayer aquifer system, composed mainly of permeable sand layers and impermeable clay layers. In 1981 the Pliocene aquifers were divided into three packages. Based on the water-table data of each aquifer, pumping tests, chemical analyses of the groundwater and the geophysical properties the Pliocene aquifers directly above the seam, together with impermeable layers, were divided into: a) the first water-bearing sands (Pl1), b) the aquifers 2080 m above the coal seam (Pl2) and c) the upper Pliocene aquifers (Pl3). For the mining operations the most important aquifer of saturated sands is Pl1. The hydraulic pressure of the groundwater in these sands directly affects the safety of the mining. These aquifers are mostly affected by the dewatering activities, too. However, the dewatering wells are constructed in such a way as to capture the whole Pl2 and, somewhere, even a part of the Pl3 complex, too. The water pressure in this multilayer aquifer can reach over 35 bars, so a massive program of drawdown activities has been needed and is still in place to decrease the water table in the area related to the mining operations. Special, multilevel observation wells are used to monitor the water level. A number of 3D finite-difference models (FDMs) were used to estimate the regional groundwater drawdown. It was observed that the FDMs performed well when predicting the regional situation, but the model-predicted drawdown was lower than the observed values at observation points in the area where the dewatering operations using “drive-in” filters have taken place in the past. This is a well-known problem of the FDM: the drawdown being rather a function of the cell size than of the flow net. The risk of water inrushes will increase, especially after 2012 and 2017, when a series of surface-drilled wells, connected into the mine’s pumping-line batteries, will be abandoned due to excavation works and mining-subsidence effects. Consequently, the dewatering schemes had to be completely reviewed. The destroyed, first-order dewatering structures will have to be replaced by a series of “drive-in” filters, drilled from the mine roadways in the area of the planned longwall face operations. For the drive-in filter-system design the FDM does not seem to be appropriate. This is especially so if the error in the drawdown and pumping flow prediction is taken into account. That led, in 2007, to the selection of the finite-element method (FEM) for the prediction of the groundwater drawdown and the water pumping rates in the areas were the underground works will encounter the risk of a water inrush. Based on the FEM prediction the sizing and the layout pattern of the “drive-in” filters were made.
Keywords: drive-in filters, groundwater, mining water, mining hydrology, geophysical well login, mathematical modelling
Published in DKUM: 06.06.2018; Views: 1578; Downloads: 201
.pdf Full text (605,68 KB)
This document has many files! More...

2.
Monitoring and analyses of seismic events at the Velenje coal mine
Jakob Likar, Evgen Dervarič, Milan Medved, Janez Mayer, Goran Vižintin, 2008, original scientific article

Abstract: Complaints about ground shaking and tremors were regularly addressed to the management of the Velenje Coal Mine. A micro-seismic monitoring system was set up on the surface in nearby urban areas and also directly in the vicinity of the mining activities. The results of these measurements were carefully analysed and presented to the public together with various safe-vibration-limit standards (in this case national standards). A system for automatically publishing measurements immediately after the event is recorded was also set up. This resulted in a dramatic reduction in the number of complaints. Routine micro-seismic monitoring became part of the regular monitoring of mining activities as some patterns of seismic response to mass mining were revealed.
Keywords: mining, rockbursts, seismicity, coal mine Velenje, longwall mining, caving, Slovenia, public response
Published in DKUM: 05.06.2018; Views: 1163; Downloads: 60
.pdf Full text (368,38 KB)
This document has many files! More...

3.
Search done in 0.09 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica