| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 6 / 6
First pagePrevious page1Next pageLast page
1.
Evaluation of the impact and fracture toughness of a nanostructured bainitic steel with low retained austenite content
Mihael Brunčko, Peter Kirbiš, Ivan Anžel, Leo Gusel, Darja Feizpour, Tomaž Irgolič, Tomaž Vuherer, 2023, original scientific article

Abstract: The impact and fracture toughness of a nanostructured, kinetically activated bainitic steel was determined using Standard methods. Prior to testing, the steel was quenched in oil and aged naturally for a period of 10 days in order to obtain a fully bainitic microstructure with a retained austenite content below 1%, resulting in a high hardness of 62HRC. The high hardness originated from the very fine microstructure of bainitic ferrite plates formed at low temperatures. It was determined that the impact toughness of the steel in the fully aged condition improved remarkably, whereas the fracture toughness was in line with expectations based on the extrapolated data available in the literature. This suggests that a very fine microstructure is most beneficial to rapid loading conditions, whereas material flaws such as coarse nitrides and non-metallic inclusions are the major limitation for obtaining a high fracture toughness.
Keywords: evaluation of fracture toughness, impact toughness, nanostructured bainite, natural aging, low retained austenite content, kinetically activated bainite KAB
Published in DKUM: 16.02.2024; Views: 251; Downloads: 17
URL Link to full text
This document has many files! More...

2.
3.
Recovery study of gold nanoparticle markers from lateral flow immunoassays
Tilen Švarc, Peter Majerič, Darja Feizpour, Žiga Jelen, Matej Zadravec, Timi Gomboc, Rebeka Rudolf, 2023, original scientific article

Abstract: Lateral flow immunoassays (LFIAs) are a simple diagnostic device used to detect targeted analytes. Wasted and unused rapid antigen lateral flow immunoassays represent mass waste that needs to be broken down and recycled into new material components. The aim of this study was to recover gold nanoparticles that are used as markers in lateral flow immunoassays. For this purpose, a dissolution process with aqua regia was utilised, where gold nanoparticles were released from the lateral flow immunoassay conjugate pads. The obtained solution was then concentrated further with gold chloride salt (HAuCl4) so that it could be used for the synthesis of new gold nanoparticles in the process of ultrasonic spray pyrolysis (USP). Various characterisation methods including scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy and optical emission spectrometry with inductively coupled plasma were used during this study. The results of this study showed that the recovery of gold nanoparticles from lateral flow immunoassays is possible, and the newly synthesised gold nanoparticles represent the possibility for incorporation into new products.
Keywords: gold nanoparticles, recovery, LFIA, ultrasonic spray pyrolysis, characterisation
Published in DKUM: 09.02.2024; Views: 202; Downloads: 14
URL Link to full text
This document has many files! More...

4.
5.
6.
Microstructure of NiTi orthodontic wires observations using transmission electron microscopy
Janko Ferčec, Darja Feizpour, Borut Buchmeister, Franc Rojko, Bojan Budič, Borut Kosec, Rebeka Rudolf, 2014, original scientific article

Abstract: This work presents the results of the microstructure observation of six different types of NiTi orthodontic wires by using Transmission Electron Microscopy (TEM). Within these analyses the chemical compositions of each wire were observed in different places by applying the EDS detector. Namely, the chemical composition in the orthodontic wires is very important because it shows the dependence between the phase temperatures and mechanical properties. Micro- structure observations showed that orthodontic wires consist of nano-sized grains containing precipitates of Ti2Ni and/or TiC. The first precipitated Ti2Ni are rich in Ti, while the precipitated TiC is rich in C. Further investigation showed that there was a difference in average grain size in the NiTi matrix. The sizes of grains in orthodontic wires are in the range from approximately 50 to 160 nm and the sizes of precipitate are in the range from 0,3 μm to 5 μm.
Keywords: orthodontic wires, nickel-titanium orthodontic wire, NiTi wire, shape memory alloys, SMA wires, microstructure, transmission electron microscopy, TEM, average grain size
Published in DKUM: 03.07.2017; Views: 1373; Downloads: 120
.pdf Full text (869,15 KB)
This document has many files! More...

Search done in 0.65 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica