| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
Vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational ordering
Dalija Povše Jesenek, Šárka Perutková, Wojciech Góźdź, Veronika Kralj-Iglič, Aleš Iglič, Samo Kralj, 2013, original scientific article

Abstract: Membrane budding often leads to the formation and release of microvesicles. The latter might play an important role in long distance cell-to-cell communication, owing to their ability to move with body fluids. Several mechanisms exist which might trigger the pinching off of globular buds from the parent membrane (vesiculation). In this paper, we consider the theoretical impacts of topological defects (frustrations) on this process in the membranes that exhibit global in-plane orientational order. A Landau–de Gennes theoretical approach is used in terms of tensor orientational order parameters. The impact of membrane shapes on position and the number of defects is analyzed. In studied cases, only defects with winding numbers m = ±1/2 appear, where we refer to the number of defects with m = 1/2 as defects, and with m = –1/2 as anti-defects. It is demonstrated that defects are attracted to regions with maximal positive Gaussian curvature, K. On the contrary, anti-defects are attracted to membrane regions exhibiting minimal negative values of K. We show on membrane structures exhibiting spherical topology that the coexistence of regions with K > 0 and K < 0 might trigger formation of defect–anti-defect pairs for strong enough local membrane curvatures. Critical conditions for triggering pairs are determined in several demonstrative cases. Then the additionally appeared anti-defects are assembled at the membrane neck, where K < 0. Consequent strong local fluctuations of membrane constituent anisotropic molecules might trigger membrane fission neck rupture, enabling a membrane fission process and the release of membrane daughter microvesicles (ie, vesiculation).
Keywords: structural transitions, topological defects, membrane microvesicles, membrane curvature, membrane fission, vesiculation
Published in DKUM: 03.08.2017; Views: 1339; Downloads: 433
.pdf Full text (4,92 MB)
This document has many files! More...

Search done in 0.04 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica