| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
Engineering properties of tropical clay and bentonite modified with sawdust
Isaac I. Akinwumi, Oluwapelumi O. Ojuri, Adebanji S. Ogbiye, Colin A. Booth, 2017, original scientific article

Abstract: Construction engineers typically avoid the use of expansive soils as construction materials because they are usually difficult to work on and can cause structural failure. This research work investigates how the application of sawdust to tropical clay and bentonite influences their geotechnical properties in order to determine their suitability for use as landfill-liner materials for the effective containment of toxic substances from landfills. X-ray diffractometry, X-ray fluorescence spectroscopy and scanning electron microscopy were used to determine the mineralogical composition, oxide composition and microstructure, respectively, of the clay and the bentonite. A series of laboratory tests were conducted to determine the specific gravity, Atterberg limits, compaction, unconfined compressive strength and permeability characteristics of the clay and the bentonite for varying proportions of sawdust application. Generally, increasing the percentage of sawdust caused a reduction in its specific gravity, maximum dry unit weight and unconfined compressive strength, while it caused an increase in the optimum moisture content and permeability of the modified clay and bentonite. The clay and bentonite both have a sufficiently low permeability that satisfies the hydraulic conductivity requirement for use as clay liners. Eight percent sawdust application to a clay having similar properties as that in this study is recommended as an economic way of modifying it – with the potential of improving its adsorbent property – for use in landfill-liner systems in order to prevent the toxic substances leaching from the landfills, thereby protecting the environment and public health.
Keywords: geotechnical properties, hydraulic barrier, landfill, construction, soil improvement, sustainability
Published in DKUM: 18.06.2018; Views: 1112; Downloads: 155
.pdf Full text (766,16 KB)
This document has many files! More...

Search done in 0.04 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica