| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
A new framework to approach Vizing's conjecture
Boštjan Brešar, Bert L. Hartnell, Michael A. Henning, Kirsti Kuenzel, Douglas F. Rall, 2021, original scientific article

Abstract: We introduce a new setting for dealing with the problem of the domination number of the Cartesian product of graphs related to Vizing's conjecture. The new framework unifies two different approaches to the conjecture. The most common approach restricts one of the factors of the product to some class of graphs and proves the inequality of the conjecture then holds when the other factor is any graph. The other approach utilizes the so-called Clark-Suen partition for proving a weaker inequality that holds for all pairs of graphs. We demonstrate the strength of our framework by improving the bound of Clark and Suen as follows: ɣ(X◻Y) ≥ max{1/2ɣ(X) ɣt(Y), 1/2ɣt(X) ɣ(Y)}, where ɣ stands for the domination number, ɣt is the total domination number, and X◻Y is the Cartesian product of graphs X and Y.
Keywords: Cartesian product, total domination, Vizing's conjecture, Clark and Suen bound
Published in DKUM: 09.08.2024; Views: 86; Downloads: 11
.pdf Full text (179,75 KB)
This document has many files! More...

2.
Vizing's conjecture: a survey and recent results
Boštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2012, review article

Abstract: Vizingova domneva iz leta 1968 trdi, da je dominacijsko število kartezičnega produkta dveh grafov vsaj tako veliko, kot je produkt dominacijskih števil faktorjev. V članku naredimo pregled različnih pristopov k tej osrednji domnevi iz teorije grafovske dominacije. Ob tem dokažemo tudi nekaj novih rezultatov. Tako so na primer pokazane nove lastnosti minimalnega protiprimera, dokazana je tudi nova spodnja meja za produkte grafov brez induciranega ▫$K_{1,3}$▫ s poljubnimi grafi. Skozi celoten članek so obravnavani pripadajoči odprti problemi, vprašanja in sorodne domneve.
Keywords: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture
Published in DKUM: 10.07.2015; Views: 1362; Downloads: 91
URL Link to full text

3.
Vizing's conjecture: a survey and recent results
Boštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2009

Abstract: Vizing's conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this paper we survey the approaches to this central conjecture from domination theory and give some new results along the way. For instance, several new properties of a minimal counterexample to the conjecture are obtained and a lower bound for the domination number is proved for products of claw-free graphs with arbitrary graphs. Open problems, questions and related conjectures are discussed throughout the paper.
Keywords: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture
Published in DKUM: 10.07.2015; Views: 1365; Downloads: 100
URL Link to full text

Search done in 0.05 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica