1. A new framework to approach Vizing's conjectureBoštjan Brešar, Bert L. Hartnell, Michael A. Henning, Kirsti Kuenzel, Douglas F. Rall, 2021, original scientific article Abstract: We introduce a new setting for dealing with the problem of the domination number of the Cartesian product of graphs related to Vizing's conjecture. The new framework unifies two different approaches to the conjecture. The most common approach restricts one of the factors of the product to some class of graphs and proves the inequality of the conjecture then holds when the other factor is any graph. The other approach utilizes the so-called Clark-Suen partition for proving a weaker inequality that holds for all pairs of graphs. We demonstrate the strength of our framework by improving the bound of Clark and Suen as follows: ɣ(X◻Y) ≥ max{1/2ɣ(X) ɣt(Y), 1/2ɣt(X) ɣ(Y)}, where ɣ stands for the domination number, ɣt is the total domination number, and X◻Y is the Cartesian product of graphs X and Y. Keywords: Cartesian product, total domination, Vizing's conjecture, Clark and Suen bound Published in DKUM: 09.08.2024; Views: 86; Downloads: 11
Full text (179,75 KB) This document has many files! More... |
2. Vizing's conjecture: a survey and recent resultsBoštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2012, review article Abstract: Vizingova domneva iz leta 1968 trdi, da je dominacijsko število kartezičnega produkta dveh grafov vsaj tako veliko, kot je produkt dominacijskih števil faktorjev. V članku naredimo pregled različnih pristopov k tej osrednji domnevi iz teorije grafovske dominacije. Ob tem dokažemo tudi nekaj novih rezultatov. Tako so na primer pokazane nove lastnosti minimalnega protiprimera, dokazana je tudi nova spodnja meja za produkte grafov brez induciranega ▫$K_{1,3}$▫ s poljubnimi grafi. Skozi celoten članek so obravnavani pripadajoči odprti problemi, vprašanja in sorodne domneve. Keywords: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture Published in DKUM: 10.07.2015; Views: 1362; Downloads: 91
Link to full text |
3. Vizing's conjecture: a survey and recent resultsBoštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2009 Abstract: Vizing's conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this paper we survey the approaches to this central conjecture from domination theory and give some new results along the way. For instance, several new properties of a minimal counterexample to the conjecture are obtained and a lower bound for the domination number is proved for products of claw-free graphs with arbitrary graphs. Open problems, questions and related conjectures are discussed throughout the paper. Keywords: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture Published in DKUM: 10.07.2015; Views: 1365; Downloads: 100
Link to full text |