| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Spatio-temporal modelling explains the effect of reduced plasma membrane Ca[sup]2+[/sup] efflux on intracellular Ca[sup]2+[/sup] oscillations in hepatocytes
Marko Marhl, Marko Gosak, Matjaž Perc, C. Jane Dixon, Anne K. Green, 2008, original scientific article

Abstract: In many non-excitable eukaryotic cells, including hepatocytes, ▫$Ca^{2+}$▫ oscillations play a key role in intra- and intercellular signalling, thus regulating many cellular processes from fertilisation to death. Therefore, understanding the mechanisms underlying these oscillations, and consequently understanding how they may be regulated, is of great interest. In this paper, we study the influence of reduced ▫$Ca^{2+}$▫ plasma membrane efflux on ▫$Ca^{2+}$▫ oscillations in hepatocytes. Our previous experiments with carboxyeosin show that a reduced plasma membrane ▫$Ca^{2+}$▫ efflux increases the frequency of ▫$Ca^{2+}$▫ oscillations, but does not affect the duration of individual transients. This phenomenon can be best explained by taking into account not only the temporal,but also the spatial dynamics underlying the generation of ▫$Ca^{2+}$▫ oscillations in the cell. Here we divide the cell into a grid of elements and treat the ▫$Ca^{2+}$▫ dynamics as a spatio-temporal phenomenon. By converting an existing temporal model into a spatio-temporal one, we obtain theoretical predictions that are in much better agreement with the experimental observations.
Keywords: cellular signalling, calcium oscillations, intracellular oscilations, spatio-temporal dynamics, hepatocytes, stochastic simulations
Published in DKUM: 07.06.2012; Views: 1272; Downloads: 49
URL Link to full text

2.
Establishing the stochastic nature of intracellular calcium oscillations from experimental data
Matjaž Perc, Anne K. Green, C. Jane Dixon, Marko Marhl, 2008, original scientific article

Abstract: Calcium has been established as a key messenger in both intra- and intercellular signaling. Experimentally observed intracellular calcium responses to different agonists show a variety of behaviors from simple spiking to complex oscillatory regimes. Here we study typical experimental traces of calcium oscillations in hepatocytes obtained in response to phenylephrine and ATP. The traces were analyzed with methods of nonlinear time series analysis in order to determine the stochastic/deterministic nature of the intracellular calcium oscillations. Despite the fact that the oscillations appear, visually, to be deterministic yet perturbed by noise, our analyses provide strong evidence that the measured calcium traces in hepatocytes are prevalently of stochastic nature. In particular, bursting calcium oscillations are temporally correlated Gaussian series distorted by a monotonic, instantaneous, time-independent function, whilst the spiking behavior appears to have a dynamical nonlinear component whereby the overall determinism level is still low. The biological importance of this finding is discussed in relation to the mechanisms incorporated in mathematical models as well as the role of stochasticity and determinism at cellular and tissue levels which resemble typical statistical and thermodynamic effects in physics.
Keywords: dynamic systems, stochastic processes, cellular signaling, calcium oscillations, time series analyses, noise, temporal correlation
Published in DKUM: 07.06.2012; Views: 1568; Downloads: 123
URL Link to full text

Search done in 0.04 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica