| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 6 / 6
First pagePrevious page1Next pageLast page
1.
What can artificial intelligence do for soil health in agriculture?
Stefan Schweng, Luca Bernardini, Katharina Keiblinger, Peter Kaul, Iztok Fister, Niko Lukač, Javier Del Ser, Andreas Holzinger, 2025, review article

Abstract: The integration of artificial intelligence (AI) into soil research presents significant opportunities to advance the understanding, management, and conservation of soil ecosystems. This paper reviews the diverse applications of AI in soil health assessment, predictive modeling of soil properties, and the development of pedotransfer functions within the context of agriculture, emphasizing AI’s advantages over traditional analytical methods. We identify soil organic matter decline, compaction, and biodiversity loss as the most frequently addressed forms of soil degradation. Strong trends include the creation of digital soil maps, particularly for soil organic carbon and chemical properties using remote sensing or easily measurable proxies, as well as the development of decision support systems for crop rotation planning and IoT-based monitoring of soil health and crop performance. While random forest models dominate, support vector machines and neural networks are also widely applied for soil parameter modeling. Our analysis of datasets reveals clear regional biases, with tropical, arid, mild continental, and polar tundra climates remaining underrepresented despite their agricultural relevance. We also highlight gaps in predictor–response combinations for soil property modeling, pointing to promising research avenues such as estimating heavy metal content from soil mineral nitrogen content, microbial biomass, or earthworm abundance. Finally, we provide practical guidelines on data preparation, feature extraction, and model selection. Overall, this study synthesizes recent advances, identifies methodological limitations, and outlines a roadmap for future research, underscoring AI’s transformative potential in soil science.
Keywords: artificial intelligence, machine learning, agriculture, soil health, soil parameter modeling, regional data bias
Published in DKUM: 17.10.2025; Views: 0; Downloads: 3
.pdf Full text (4,22 MB)

2.
LLM in the loop: a framework for contextualizing counterfactual segment perturbations in point clouds
Veljka Kočić, Niko Lukač, Dzemail Rozajac, Stefan Schweng, Christoph Gollob, Arne Nothdurft, Karl Stampfer, Javier Del Ser, Andreas Holzinger, 2025, original scientific article

Abstract: Point Cloud Data analysis has seen a major leap forward with the introduction of PointNet algorithms, revolutionizing how we process 3D environments. Yet, despite these advancements, key challenges remain, particularly in optimizing segment perturbations to influence model outcomes in a controlled and meaningful way. Traditional methods struggle to generate realistic and contextually appropriate perturbations, limiting their effectiveness in critical applications like autonomous systems and urban planning. This paper takes a bold step by integrating Large Language Models into the counterfactual reasoning process, unlocking a new level of automation and intelligence in segment perturbation. Our approach begins with semantic segmentation, after which LLMs intelligently select optimal replacement segments based on features such as class label, color, area, and height. By leveraging the reasoning capabilities of LLMs, we generate perturbations that are not only computationally efficient but also semantically meaningful. The proposed framework undergoes rigorous evaluation, combining human inspection of LLM-generated suggestions with quantitative analysis of semantic classification model performance across different LLM variants. By bridging the gap between geometric transformations and high-level semantic reasoning, this research redefines how we approach perturbation generation in Point Cloud Data analysis. The results pave the way for more interpretable, adaptable, and intelligent AI-driven solutions, bringing us closer to realworld applications where explainability and robustness are paramount.
Keywords: explainable AI, point cloud data, counterfactual reasoning, LiDAR, 3D point cloud data, interpretability, human-centered AI, large language models, K-nearest neighbors
Published in DKUM: 19.05.2025; Views: 0; Downloads: 3
.pdf Full text (7,24 MB)

3.
Human-centered ai in smart farming : toward agriculture 5.0
Andreas Holzinger, Iztok Fister, Iztok Fister, Peter Kaul, Senthold Asseng, 2024, original scientific article

Abstract: This paper delineates the contemporary landscape, challenges, and prospective developments in human-centred artificial intelligence (AI) within the ambit of smart farming, a pivotal element of the emergent Agriculture 5.0, supplanting Agriculture 4.0. Analogous to Industry 4.0, agriculture has witnessed a trend towards comprehensive automation, often marginalizing human involvement. However, this approach has encountered limitations in agricultural contexts for various reasons. While AI’s capacity to assume human tasks is acknowledged, the inclusion of human expertise and experiential knowledge (human-in-the-loop) often proves indispensable, corroborated by the Moravec’s Paradox: tasks simple for humans are complex for AI. Furthermore, social, ethical, and legal imperatives necessitate human oversight of AI, a stance strongly reflected in the European Union’s regulatory framework. Consequently, this paper explores the advancements in human-centred AI focusing on their application in agricultural processes. These technological strides aim to enhance crop yields, minimize labor and resource wastage, and optimize the farm-to-consumer supply chain. The potential of AI to augment human decision-making, thereby fostering a sustainable, efficient, and resilient agri-food sector, is a focal point of this discussion - motivated by the current worldwide extreme weather events. Finally, a framework for Agriculture 5.0 is presented, which balances technological prowess with the needs, capabilities, and contexts of human stakeholders. Such an approach, emphasizing accessible, intuitive AI systems that meaningfully complement human activities, is crucial for the successful realization of future Agriculture 5.0.
Keywords: human-centered AI, smart framing, agriculture 5.0, digital transformation, artificial intelligence
Published in DKUM: 23.04.2025; Views: 0; Downloads: 8
.pdf Full text (1,10 MB)

4.
Enhancing trust in automated 3D point cloud data interpretation through explainable counterfactuals
Andreas Holzinger, Niko Lukač, Dzemail Rozajac, Emil Johnston, Veljka Kočić, Bernhard Hoerl, Christoph Gollob, Arne Nothdurft, Karl Stampfer, Stefan Schweng, Javier Del Ser, 2025, original scientific article

Abstract: This paper introduces a novel framework for augmenting explainability in the interpretation of point cloud data by fusing expert knowledge with counterfactual reasoning. Given the complexity and voluminous nature of point cloud datasets, derived predominantly from LiDAR and 3D scanning technologies, achieving interpretability remains a significant challenge, particularly in smart cities, smart agriculture, and smart forestry. This research posits that integrating expert knowledge with counterfactual explanations – speculative scenarios illustrating how altering input data points could lead to different outcomes – can significantly reduce the opacity of deep learning models processing point cloud data. The proposed optimization-driven framework utilizes expert-informed ad-hoc perturbation techniques to generate meaningful counterfactual scenarios when employing state-of-the-art deep learning architectures. The optimization process minimizes a multi-criteria objective comprising counterfactual metrics such as similarity, validity, and sparsity, which are specifically tailored for point cloud datasets. These metrics provide a quantitative lens for evaluating the interpretability of the counterfactuals. Furthermore, the proposed framework allows for the definition of explicit interpretable counterfactual perturbations at its core, thereby involving the audience of the model in the counterfactual generation pipeline and ultimately, improving their overall trust in the process. Results demonstrate a notable improvement in both the interpretability of the model’s decisions and the actionable insights delivered to end-users. Additionally, the study explores the role of counterfactual reasoning, coupled with expert input, in enhancing trustworthiness and enabling human-in-the-loop decision-making processes. By bridging the gap between complex data interpretations and user comprehension, this research advances the field of explainable AI, contributing to the development of transparent, accountable, and human-centered artificial intelligence systems.
Keywords: explainable AI, point cloud data, counterfactual reasoning, information fusion, interpretability, human-centered AI
Published in DKUM: 06.03.2025; Views: 0; Downloads: 6
.htm Full text (186,97 KB)

5.
Towards a low-cost mobile subcutaneous vein detection solution using near-infrared spectroscopy
Simon Jurič, Vojko Flis, Matjaž Debevc, Andreas Holzinger, Borut Žalik, 2014, review article

Abstract: Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature). The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database) the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction.
Keywords: subcutaneous vein detection, diagnostic methods and procedures, infrared rays, spectroscopy, vascular diseases, mobile devices
Published in DKUM: 15.06.2017; Views: 1557; Downloads: 392
.pdf Full text (2,36 MB)
This document has many files! More...

6.
Search done in 0.06 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica