| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Uporaba paralelnih evolucijskih algoritmov za reševanje več-kriterijskih optimizacijskih problemov : magistrsko delo
Aleš Gartner, 2024, master's thesis

Abstract: V sklopu magistrskega dela predstavimo in implementiramo nov paralelni evolucijski algoritem z otoškim paralelnim modelom I-DEMO, ki algoritem diferencialne evolucije za več-kriterijsko optimizacijo (angl. Differential Evolution Multiobjective Optimization, krajše DEMO) razširi s koncepti paralelnih več-kriterijskih evolucijskih algoritmov. Učinkovitost algoritma I-DEMO nato primerjamo z originalnim algoritmom DEMO na testnih več-kriterijskih problemih. S statistično analizo dobljenih rezultatov smo pokazali, da je algoritem I-DEMO boljši od algoritma DEMO, če oba uporabljata selekcijsko strategijo, ki temelji na indikatorjih kakovosti. Z dodatnimi testi in analizo njihovih rezultatov smo pokazali tudi, da različica algoritma I-DEMO, ki uporablja selekcijsko strategijo, ki temelji na indikatorjih kakovosti, dosega boljše rezultate kot ostale selekcijske strategije, in da večje število otokov v splošnem poslabša učinkovitost algoritma.
Keywords: več-kriterijska optimizacija, evolucijsko računanje, paralelni evolucijski algoritmi, diferencialna evolucija
Published in DKUM: 06.02.2025; Views: 0; Downloads: 14
.pdf Full text (1,73 MB)

2.
Prilagodljivi algoritem diferencialne evolucije z arhivom uspešnosti in linearnim zmanjševanjem populacije : diplomsko delo
Aleš Gartner, 2022, undergraduate thesis

Abstract: V sklopu diplomskega dela predstavljamo delovanje prilagodljivega algoritma diferencialne evolucije z arhivom uspešnosti in linearnim zmanjševanjem populacije ter ga implementiramo v programskem jeziku Python. S statistično primerjavo rezultatov implementacije na testnih funkcijah smo pokazali, da smo algoritem uspešno implementirali. Algoritem smo vključili v Python knjižnico NiaPy ter primerjali njegovo učinkovitost z drugimi algoritmi diferencialne evolucije, implementiranimi v NiaPy. Z analizo rezultatov smo pokazali, da je naš implementirani algoritem resnično eden izmed najučinkovitejših verzij algoritma diferencialne evolucije.
Keywords: optimizacija, algoritmi po vzoru iz narave, diferencialna evolucija, NiaPy
Published in DKUM: 24.10.2022; Views: 454; Downloads: 37
.pdf Full text (1008,89 KB)

Search done in 0.06 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica