Kemijske analizne metode v kmetijstvu in toksične snovi v ekosistemih

Navodila za laboratorijske vaje
Kemijske analizne metode v kmetijstvu in
toksične snovi v ekosistemih

Navodila za laboratorijske vaje

Avtorica
Janja Kristl

Februar 2022
<table>
<thead>
<tr>
<th>Naslov</th>
<th>Kemijske analizne metode v kmetijstvu in toksične snovi v ekosistemih</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Chemical Analytical Methods in Agriculture and Toxics Compounds in Ecosystems</td>
</tr>
<tr>
<td>Podnaslov</td>
<td>Navodila za laboratorijske vaje</td>
</tr>
<tr>
<td>Subtitle</td>
<td>Instructions for Laboratory Exercises</td>
</tr>
<tr>
<td>Avtorica</td>
<td>Janja Kristl</td>
</tr>
<tr>
<td>Author</td>
<td>(Univerza v Mariboru, Fakulteta za kmetijstvo in biosistemske vede)</td>
</tr>
<tr>
<td>Recenzija</td>
<td>Mitja Kolar</td>
</tr>
<tr>
<td>Review</td>
<td>(Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo)</td>
</tr>
<tr>
<td>Tomaž Langerholc</td>
<td>(Univerza v Mariboru, Fakulteta za kmetijstvo in biosistemske vede)</td>
</tr>
<tr>
<td>Jezikovni pregled</td>
<td>Mojca Garantini</td>
</tr>
<tr>
<td>Language editing</td>
<td>(Univerza v Mariboru)</td>
</tr>
<tr>
<td>Tehnični urednik</td>
<td>Jan Perša</td>
</tr>
<tr>
<td>Technical editor</td>
<td>(Univerza v Mariboru, Univerzitetna založba)</td>
</tr>
<tr>
<td>Oblikovanje ovitka</td>
<td>Jan Perša</td>
</tr>
<tr>
<td>Cover designer</td>
<td>(Univerza v Mariboru, Univerzitetna založba)</td>
</tr>
<tr>
<td>Grafike na ovitku</td>
<td>Vinograd Gradišče, Zgornji Leskovec, foto: Jan Perša, 2022</td>
</tr>
<tr>
<td>Cover graphics</td>
<td>Chemic, avtor: fischnase69, Pixabay.com CC0, 2022</td>
</tr>
<tr>
<td>Grafične priloge</td>
<td>Avtorica</td>
</tr>
<tr>
<td>Graphic material</td>
<td>Založnik</td>
</tr>
<tr>
<td>Published by</td>
<td>Univerza v Mariboru, Univerzitetna založba</td>
</tr>
<tr>
<td>Izdajatelj</td>
<td>Pivola 10, 2311 Hoče, Slovenija</td>
</tr>
<tr>
<td>Published at</td>
<td>https://www.fkbv.um.si, fkbv@um.si</td>
</tr>
<tr>
<td>Izdaja</td>
<td>Prva izdaja</td>
</tr>
<tr>
<td>Edition</td>
<td>Izdano</td>
</tr>
<tr>
<td>Published at</td>
<td>Maribor, februar 2022</td>
</tr>
<tr>
<td>Vrsta publikacije</td>
<td>E-knjiga</td>
</tr>
<tr>
<td>Publication type</td>
<td>Dostopno na</td>
</tr>
</tbody>
</table>

CIP - Kataložni zapis o publikaciji
Univerzitetna knjižnica Maribor

54:631(076.5) 0.034.2

KRISTL, Janja
Kemijske analizne metode v kmetijstvu in toksične snovi v ekosistemih: navodila za laboratorijske vaje (Elektronski vir) / avtorica

doi: 10.18690/um.fkbv.2.2022
COBISS.SI-ID 97381123

© Univerza v Mariboru, Univerzitetna založba / University of Maribor, University Press
Besedilo / Text © Kristl, 2022

To delo je objavljeno pod licenco Creative Commons Priznanje avtorstva 4.0 Mednarodna. / This work is licensed under the Creative Commons Attribution 4.0 International License.

Uporabnikom je dovoljeno tako nekomercialno kot tudi komercialno reproduciranje, distribuiranje, dajanje v najem, javna priobčitev in predelava avtorskega dela, pod pogojem, da navedejo avtorja izvirnega dela.

Vsa gradiva tretjih oseb v tej knjigi so objavljena pod licenco Creative Commons, razen če to ni navedeno drugače. Če želite ponovno uporabiti gradivo tretjih oseb, ki ni zajeto v licenci Creative Commons, boste morali pridobiti dovoljenje neposredno od imetnika avtorskih pravic.

https://creativecommons.org/licenses/by/4.0

Cena	Brezplačni izvod
DOI | https://doi.org/10.18690/um.fkbv.2.2022 |

---|---|
Kazalo

Predgovor .. 1

Določanje NaCl v živilih z obarjalno titracijo po Mohru .. 9
1.1 Teoretične osnove .. 9
1.2 Izvedba vaje .. 11

Določitev proteinov s Kjeldahlovo metodo ... 13
2.1 Teoretične osnove .. 13
2.2 Izvedba vaje .. 15

Določanje koncentracije rastlinam dostopnega bakra v talnih vzorcih s plamensko atomsko absorpcijsko spektrometrijo ... 19
3.1 Teoretične osnove .. 19
3.2 Izvedba vaje .. 22

Določitev skupnih fenolov z molekulsko absorpcijsko spektrometrijo 25
4.1 Teoretične osnove .. 25
4.2 Izvedba vaje .. 27

Določitev sladkorjev s tekočinsko kromatografijo visoke ločljivosti ... 31
5.1 Teoretične osnove .. 31
5.2 Izvedba vaje .. 34

Določitev izmenljivih frakcij svinca v talnih vzorcih z atomsko absorpcijsko spektrometrijo 37
6.1 Teoretične osnove .. 37
6.2 Izvedba vaje .. 39

Določitev vsebnosti oksalatov v sadju in zelenjavi s tekočinsko kromatografijo visoke ločljivosti ... 43
7.1 Teoretične osnove .. 43
7.2 Izvedba vaje .. 44

Kvalitativna določitev nitrata v zelenjavi ... 47
8.1 Teoretične osnove .. 47
8.2 Izvedba vaje .. 48
Navodila za vaje so namenjena študentom prvega letnika magistrskega študijskega programa Kmetijstvo. Vaje dopolnjujejo nekatere vsebinske sklope predavanj pri predmetih Kemijske analitične metode v kmetijstvu in Toksične snovi v ekosistemih. Vrstni red vaj je zasnovan tako, da vsebinsko sledijo osnovnim teoretičnim znanjem, ki so obravnavana na predavanjih. Študentu pomagajo razumeti posamezne pojme in laboratorijske postopke. Pri vsaki vaji so na kratko predstavljene teoretične osnove, ki so potrebne za razumevanje določene tematike in izvedbe eksperimenta. Sledi seznam potrebne opreme in priprava reagentov, ki jih v večini primerov na vajah neposredno ne boste pripravljali. Zaradi uspešno izvedbo vaje natančno preberite navodila in se držite predpisanih postopkov. Če česa ne razumete, vprašajte asistenta za dodatno razlago. Ko ste z eksperimentalnim delom končali, preverite, ali ste umili in pospravili vse, kar ste uporabljali.
KEMIJSKE ANALIZNE METODE V KMETIJSTVU IN TOKSIČNE SNOVI V EKOSISTEMIH
Delo in varnost v laboratoriju

Pri laboratorijskih vajah upoštevajte pravila za varno delo v laboratoriju in se strogo držite napotkov, ki jih dobite od asistenta. Ta vas bo seznanil o osnovnih lastnostih kemikalij, ki jih boste pri izvedbi vaje uporabljali (varnostni list). Kakršnokoli nezgodo ali poškodbo takoj sporočite asistentu oziroma osebi, ki vodi vaje. Pravila veljajo za vse, ki se v laboratoriju nahajajo.

Pravila za varno delo v laboratoriju

Steklovina

- Ne uporabljajte počene steklovine ali steklovin, na kateri so vidne praske;
- segreto steklovino ohlajajte počasi;
- ne segrevajte zaprtih steklenih posod;
- pri prenašanju steklenic uporabite obe roki;
- če steklenih obrusov ne morete ločiti, prosite za pomoč asistenta.

Električne naprave

- Pred priključitvijo aparatur na električno omrežje se prepričajte, ali so stikala na aparaturi v položaju izklop;
− ne (po)vlecite sunkovito vtikača iz vtičnice;
− z električno opremo ne rokujte z mokrimi rokami;
− v bližini aparatur ne sme biti vnetljivih snovi;
− električni podaljšek uporabite le, kadar je nujno in čim kraši čas;
− preverite, ali je površina pod aparaturami suha (ni mokra);
− po končanem delu izklopite električne naprave.

Kemikalije

− Uporabljajte samo označene kemikalije;
− pred uporabo se prepričajte, ali ste izbrali pravo (v navodilih za vajo preverite ime in koncentracijo in primerjajte z zapisom na posodi);
− različne kemikalije združujte le, če je taka zahteva v navodilih za vaje;
− kemikalij nikoli ne okušajte;
− pipetirajte samo z nastavkom za pipeto (uporaba nastavka za pipeto je obvezna);
− pri delu se ne dotikajte oči;
− kislino vedno dodajate v vodo, nikoli obratno;
− ne vlivajte vroče vode (nad 90 °C) v kemikalije;
− ne zlivajte kemikalij v pomivalna korita (v odtoke);
− odpadne kemikalije zbiramo v posebnih posodah;
− ne odnašajte kemikalij iz laboratorija;
− zaradi varnosti ne postavljajte kemikalij na rob delovnega pulta;
− posodo, v katero ste shranili, vzorec takoj označite;
− s snovmi, ki so zdravju škodljive (mutagene, rakotvorne, akutno strupene) in hlapne, delamo samo v digestoriju;
− med laboratoriji lahko kemikalije prenašate le v zaprti embalaži z uporabo vozička ali košare.

Laboratorijski red

− Delo v laboratoriju je dovoljeno v času izvajanja laboratorijskih vaj;
− poškodovanih aparatur in laboratorijskega inventarja ne uporabljate;
− v laboratoriju ni dovoljeno prinašati hrane in pijač;
− hranjenje hrane in pijač v laboratorijskih hladilnikih ni dovoljeno;
− dolge lase morate speti;
− uporaba mobilnega telefona in prenosnikov je prepovedana;
− po končanem delu si obvezno umijte roke.

Pri praktični izvedbi vaj v laboratoriju je obvezna oprema študenta

− Navodila za vaje;
− zaščitna halja z dolgimi rokavi, ki sega vsaj do kolen (100 % bombaž);
− zaščitne rokavice;
− zaščitna očala;
− primerna obutev (uporaba natikačev in sandal ni dovoljena).

Piktogrami

Piktogrami so črni znaki na beli podlagi in imajo rdečo obrobo. Označujejo vrsto nevarnosti, ki je povezana z uporabo nevarne snovi ali zmesi. Piktogramov je devet in jih po GHS (Globally Harmonised System of Classification and Labelling of Chemicals) delimo v tri skupine: znake za fizikalno nevarnost, na znake za nevarnosti za zdravje in na znake za nevarnost v okolju.

Fizikalne nevarnosti

<table>
<thead>
<tr>
<th>Piktogram</th>
<th>Razred in kategorija nevarnosti</th>
</tr>
</thead>
</table>
| ![GHS 01](image) | − Nestabilni eksplozivi in eksplozivi, ki ne spadajo med nestabilne eksplozive;
− samoreaktivne snovi in zmesi;
− organski peroksid. |
| ![GHS 02](image) | Vnetljivi plini, aerosoli, tekočine in trdne snovi:
− samoreaktivne snovi in zmesi;
− pirofore tekočine in trdne snovi, ki v stiku z zrakom lahko povzročijo požar;
− samosegrevajoče se snovi in zmesi;
− snovi in zmesi, ki v stiku z vodo sproščajo vnetljive pline;
− organski peroksid, ki pri segrevanju lahko povzročijo požar. |
Kemiske Analizne Metode v Kmetijstvu in Toksične Snovi v Ekosistemih

<table>
<thead>
<tr>
<th>Piktogram</th>
<th>Razred in kategorija nevarnosti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oksidativni plini, tekočine in trdne snovi, ki lahko ob prisotnosti kisika povzročijo eksplozijo ali požar ali pa le-tega okrepijo.</td>
</tr>
<tr>
<td></td>
<td>Plini pod tlakom:</td>
</tr>
<tr>
<td></td>
<td>– stisnjeni plini – lahko povzročijo eksplozijo;</td>
</tr>
<tr>
<td></td>
<td>– utekočinjeni plini – ohljeni utekočinjeni plini lahko povzročijo ozkebine in poškodbe;</td>
</tr>
<tr>
<td></td>
<td>– raztopljeni plini – segrevanje lahko povzroči eksplozijo.</td>
</tr>
<tr>
<td></td>
<td>Jedka snov za kovine.</td>
</tr>
</tbody>
</table>

Nevarnosti za zdravje

<table>
<thead>
<tr>
<th>Piktogram</th>
<th>Razred in kategorija nevarnosti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jedka snov, ki lahko povzroči hude opekline kože in poškodbe oči.</td>
</tr>
<tr>
<td></td>
<td>Akutna strupenost po zaužitju, v stiku s kožo in pri vdihavanju.</td>
</tr>
<tr>
<td></td>
<td>Akutno strupena (škodljiva) snov:</td>
</tr>
<tr>
<td></td>
<td>– povzroča draženje kože in oči, preobčutljivost kože;</td>
</tr>
<tr>
<td></td>
<td>– draži dihalne poti;</td>
</tr>
<tr>
<td></td>
<td>– ima narkotične učinke, povzroča zaspanost ali omotičnost.</td>
</tr>
</tbody>
</table>
Delo in varnost v laboratoriju

GHS 08

- Povzroča mutacije in preobčutljivost dihal;
- je rakotvorna;
- učinkuje na rodnost in nerojenega otroka;
- je strupena za posamezne organe – enkratna izpostavljenost;
- je strupena za posamezne organe – ponavljajoča se izpostavljenost;
- nevarnost pri vdihavanju, pri vstopu v dihalne poti in pri zaužitju je
- lahko zdravju škodljiva ali smrtna.

Nevarnosti za okolje

<table>
<thead>
<tr>
<th>Piktogram</th>
<th>Razred in kategorija nevarnosti</th>
</tr>
</thead>
</table>

Prva pomoč

- Vreznine: mesto vreza očistimo in prekrijemo z obližem ali povežemo s povojem;
- opekline hladimo pod hladno vodo;
- pri brizgih jedkih snovi na kožo le-to začnemo takoj spirati s hladno vodo (najmanj 15 minut);
- v primeru brizga v oči le-te začnemo takoj spirati s hladno vodo – spiramo pod pipo za izpiranje oči (Slika 1) najmanj 15 minut;
- SOS (klicna številka 112).
Laboratorijski dnevnik

Študent vodi laboratorijski dnevnik, ki ga pripravi po naslednjih točkah:

1. Naslov vaje in datum
2. Namen vaje
3. Kratak opis dela
4. Meritve
5. Izračuni
6. Rezultati in diskusija

Laboratorijski dnevnik začnite z naslovom vaje, ki mu sledi namen vaje in kratek opis dela, ki ga zapišete tako, da lahko kdorkoli ponovi opisan eksperiment. Ne pozabite zapisati rezultatov meritev in narediti izračunov tam, kjer navodila za vajo to zahtevajo. Rezultate zberete in jih prikažete v obliki preglednic ali grafikonov. Preverite ali se rezultati ujemajo s pričakovanimi vrednostmi in jih komentirajte na način, kot je predviden pri posamezni vaji. Osnutek laboratorijskega dnevnika najdete v Prilogi 1.

Pomanjkljivo izdelane dnevnikove vaje dopolnite in jih v ponovni pregled oddajte čim prej, najkasneje pred pristopom na kolokvij oziroma na izpit.
1 Določanje NaCl v živilih z obarjalno titracijo po Mohru

Osnovni pojmi: natrijev klorid, konzerviranje živil, obarjalna titracija, standardna raztopina

Namen vaje: Kloridne ione (Cl\(^{-}\)) v nevtralni ali šibko bazični raztopini vzorca živila titriramo s standardno raztopino srebrovega nitrata (AgNO\(_3\)) v prisotnosti indikatorja, ki je po Mohrovi metodi kromatni(VI) ion (CrO\(_4^{2-}\)).

1.1 Teoretične osnove

Natrijev klorid

Natrijev klorid (kuhinjska sol) uporabljamo kot sol pri kuhanju in pripravi hrane in ima pomembno tehnološko vlogo pri konzerviranju mnogih živil. Dodajanje soli hrani zaradi konzerviranja se uporablja že tisočletja. Zaradi hlajenja in drugih načinov konzerviranja hrane se je potreba po dodajanju soli zmanjšala, vendar raven natrija, zlasti v predelani hrani, ostaja visoka. Pri nekaterih živilih ima sol še vedno pomembno vlogo pri zmanjševanju rasti patogenov in organizmov, ki kvarijo izdelke in zmanjšujejo rok uporabnosti. Vsebnost soli v živilih ostaja visoka tudi, ker sol izboljša konsistenco in strukturo živil (npr. sir in kruh). Živila z najnižjimi vsebnostmi soli so: sveže sadje in zelenjava, oreščki, stročnice in žita (Institute of medicine (US) Committee on strategies to
reduce sodium intake, 2010). Vsebnost NaCl v konzervirani zelenjavi naj ne bi presegla 3 %.

Človeško telo ne more proizvajati lastne soli, zato potreben dnevni vnos zagotovimo s hrano. V zadnjih desetletjih se je s vnosom tehnološko predelanih živil in dosoljevanjem pri kuhanju in hranjenju vnos soli (in s tem natrija) povečal do te mere, da sol obravnavamo kot pomembno prehransko nevarnost za zdravje. Prekompren vnos natrija predstavlja tveganje za povišan krvni tlak. Za odraslo populacijo je priporočen dnevni vnos soli do 5 g, fiziološke potrebe po natriju pa odrasla oseba zagotovi z zaužitjem 1,4 g soli na dan. V državah zabodne Evrope vnesemo v organizem 80 % soli z uživanjem predelanih, pol pripravljenih in pripravljenih živil (Hlastan Ribič, 2009). Odrasli prebivalci Slovenije po podatkih NIJZ presegamo priporočeno dnevno količino soli, ki zadovolji fiziološke potrebe po natriju, za 130 %.

Sol je zelo pomembna mineralna sestavina, ki jo dodajamo tudi v hrano za prehrano domačih živali. Znano je, da goveja živina bolje prirašča, če ima na voljo zadostne količine soli, sol pa tudi povečuje apetit, žemo in izboljšuje prebavo.

Obarjalne titracije

Obarjalne titracije so osnovane na nastanku težko topne oborine, ki nastane pri reakciji med analitom in standardno raztopino. Standardne raztopine so raztopine reagentov z natančno znano koncentracijo. Večina obarjalnih titracij, ki jih uporabljamo v praksi, sloni na titracijah z raztopino srebrovega nitrata (AgNO₃). Končno točko titracije določimo z indikatorji ali potenciometrično z uporabo ionoselektivnih elektrod.

Pri določanju kloridnih ionov po Mohru raztopino vzorca titriramo s standardno raztopino AgNO₃ v nevtralnem ali slabo alkalnem mediju. Kot indikator uporabimo raztopino kalijevega kromata(VI) (K₂CrO₄). Med titracijo srebrovi ioni (Ag⁺) reagirajo s kloridnimi ioni (Cl⁻) v netopen srebrov klorid (AgCl), ki se iz raztopine izloči kot bela oborina. Po prvem prebitku standardne raztopine, zaradi reakcije med Ag⁺ in kromatnimi(VI) ioni (CrO₄²⁻), nastane rdeče rjava oborina srebrovega kromata(VI) (Ag₂CrO₄).
Reakcija

\[\text{Ag}^+ + \text{Cl}^- \rightarrow \text{AgCl} \] (do končne točke titracije)

\[2\text{Ag}^+ + \text{CrO}_4^{2-} \rightarrow \text{Ag}_2\text{CrO}_4 \] (v končni točki titracije)

1.2 Izvedba vaje

Reagenti in pribor

- 0,05 M raztopina AgNO₃, nasičena raztopina K₂CrO₄, kremenčev pesek brez Cl⁻, 0,1 M raztopina NaOH;
- elektronska tehtnica, bireta, terilnica in pestilo, 100 ml merilna bučka, vodna kopel, cedilo, filtrirni papir, centrifuga, pH-testni lističi, 20 ml polnilna pipeta.

Postopek

V terilnico natehtajte 2–3 g vzorca (sir, kruh, mesni izdelek, konzervirana zelenjava) in si zapišite maso. Konzervirano zelenjavo pred tehtanjem precedite skozi cedilo, splaknite z demineralizirano vodo in posušite. Vzorcu v terilnici dodajte žličko kremenčevega peska, 2 do 3 ml vode in ga s pestilom dobro strite, da dobite homogeno zmes. Vsebino (suspenzijo) nato kvantitativno prenesite v 100 ml merilno bučko in pri tem sperite terilnico in pestilo s približno 50 ml vode. Dobro premešajte in merilno bučko postavite za 15 minut v vrelo vodno kopel. Suspenzijo ohladite na sobno temperaturo in merilno bučko z vodo dopolnite do oznake. Premešajte in filtrirajte ali centrifugirajte. S testnimi lističi preverite pH vrednost filtrata. Če filtrat reagira kislo, ga pred titracijo previdno nevtralizirajte z 0,1 M raztopino NaOH.

V dve erlenmajerici odpipetirajte 20 ml bistrega filtrata, dodajte 3–4 kapljice indikatorja, stene erlenmajerice sperite z demineralizirano vodo in titrirajte z 0,05 M raztopino AgNO₃ do nastanka rdeče rjave oborine. Na bireti odčitajte volumen raztopine, ki ste jo porabili za titracijo. Odstotek NaCl v živilu izračunajte po enačbi:

\[
\%\text{NaCl} = \frac{V \cdot 5 \cdot 0,002925 \cdot 100}{m}
\]

\(m \) = natehtan vzorec (g)
\(V \) = poraba raztopine AgNO₃ (ml)
Rezultat

Rezultat vaje je vsebnost soli v živilih, izražena v odstotkih. Rezultate zberite v preglednici in jih komentirajte. Izračunajte količino živila, s katero odrasla populacija ne bi presegla priporočenega dnevnega vnosa soli.

Uporabljeni viri

https://www.fsai.ie/faq/additives/sulphur_dioxide_sulphites.html

2 Določitev proteinov s Kjeldahlovo metodo

Osnovni pojmi: beljakovine, Kjeldahlova metoda, empirični dejavniki, destilacija, kislinski razklop

Namen vaje: Po Kjeldahlovi metodi dušik vezan v organskih spojinah živil v prisotnosti koncentrirane žveplove(VI) kisline (H₂SO₄) reduciramo v amonijak (NH₃), ki s kislino tvori amonijev sulfat(VI) ((NH₄)₂SO₄). Dodamo močno bazo, natrijev hidroksid (NaOH), s katero iz soli izpodrinemo šibko bazo (NH₃) in jo z destilacijo uvajamo v znano množino H₂SO₄. Množino prebitne kisline določimo s titracijo s standardno raztopino NaOH.

2.1 Teoretične osnove

Beljakovine

Beljakovine, maščobe in ogljikovi hidrati so organske spojine, ki jih s hrano v telo vnašamo v večjih količinah (makrohranila). Maščobe in ogljikovi hidrati primarno služijo kot vir energije, proteini pa kot gradniki teles. Organizmu zagotavljajo aminokisline in druge dušikove spojine, ki jih potrebuje za sintezo lastnih aminokislin. Nahajajo se v vsaki celici in tvorijo glavno maso protoplazme. Potreba po beljakovinah se s starostjo spreminja. Za otroke in mladostnike je priporočen dnevni vnos beljakovin od 0,9 do 1,0 g/kg telesne teže; za odrasle in starejše osebe pa 0,8 g/kg telesne teže. Zgornja meja vnosa beljakovin
za odrasle, ki po dosedanjih spoznanjih nima neželenih fizioloških učinkov, je 2 g/kg telesne mase (Hlastan Ribič, 2009).

Za določanje proteinov v mesu, žitih, krmih, pijačah, tleh, odpadnih vodah in drugih vzorcih uporabljamo Kjeldahlov metodo, ki je bila razvita že leta 1883. V zadnjih 100 letih so se aparati in tehnika dokaj spremenili, osnovni postopki, ki jih je uvedel Kjeldahl, pa so ostali enaki. Metoda temelji na določanju proteinov posredno preko dušika in predpostavlja, da je ves dušik, ki je prisoten v vzorcu, vezan v beljakovinah. Analiza poteka v treh stopnjah: kislinski razklop, destilacija z vodno paro in titracija (Reid, Schwartz, Shoemaker, Smith in Sporns, 2004). Kislinski razklop vzorca poteka ob prisotnosti kataliza in žveplove(VI) kisline (\(H_2SO_4\)). Pri tem se dušik, ki je vezan v organskih spojinah, reducira v amonijak (\(NH_3\)), ki s kislino tvori amonijev sulfat(VI) (\((NH_3)_2SO_4\)). Iz nastale soli z dodatkom močne baze, natrijevega hidroksida (\(NaOH\)), izpodrimemo šibko bazo (\(NH_3\)) in jo z destilacijo uvajamo v znano množino \(H_2SO_4\). Množino prebitne kisline (kislina, ki se ne porabi za neutralizacijo \(NH_3\)) določimo s titracijo s standardno raztopino \(NaOH\).

Vsebnost proteinov v vzorcu izračunamo s pomočjo ustreznega koeficienta. Predpostavljamo, da mešanica čistih proteinov vsebuje 16 % dušika. Vsebnost proteinov v vzorcu izračunamo tako, da določimo vsebnost skupnega dušika in vrednost pomnožimo s koeficientom 6,25 (100/16). Ta empirični koeficient uporabimo pri večini živil, ker je delež ne proteinskega dušika znanemarljiv. Kadar je za posamezno živilo znana prava vrednost, uporabimo specifični empirični koeficient (Preglednica 2.1).
Destilacija

Destilacija je postopek, ki ga uporabljamo za ločevanje snovi iz zmesi, če imajo le-te dovolj različne temperature vrelišča. Vzorec v destilacijski bučki segrejemo do vrenja. Pare potujejo do hladilnika, ki ga hladimo z vodo, in na hladni površini kondenzirajo. Destilat (kondenzirana tekočina) kaplja v posodo, ki je ločena od originalne tekočine.

Preglednica 2.1: Empirični koeficienti za preračun odstotka N v odstotek skupnih proteinov

<table>
<thead>
<tr>
<th>Živilo</th>
<th>Empirični koeficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meso, jajca, jajčni izdelki</td>
<td>6,25</td>
</tr>
<tr>
<td>Mleko, mlečni izdelki</td>
<td>6,38</td>
</tr>
<tr>
<td>Ribč, morski sadeži</td>
<td>6,25</td>
</tr>
<tr>
<td>Pšenica, pšenični kosmiči, testenine</td>
<td>5,70</td>
</tr>
<tr>
<td>Mandlji</td>
<td>5,18</td>
</tr>
<tr>
<td>Arašidi</td>
<td>5,46</td>
</tr>
<tr>
<td>Riž</td>
<td>5,95</td>
</tr>
<tr>
<td>Soja</td>
<td>5,71</td>
</tr>
<tr>
<td>Otrobi</td>
<td>6,31</td>
</tr>
<tr>
<td>Koruza, koruzni zdrob</td>
<td>6,25</td>
</tr>
<tr>
<td>Proso, ješprenj, ječmenovi kosmiči, rž, oves</td>
<td>5,83</td>
</tr>
<tr>
<td>Polnozmati izdelki</td>
<td>5,83</td>
</tr>
<tr>
<td>Sončnična semena</td>
<td>5,30</td>
</tr>
<tr>
<td>Kokosovo meso</td>
<td>5,30</td>
</tr>
<tr>
<td>Zelenjava in zelenjavni izdelki (razen soje)</td>
<td>6,25</td>
</tr>
<tr>
<td>Sadje in izdelki iz sadja</td>
<td>6,25</td>
</tr>
</tbody>
</table>

2.2 Izvedba vaje

Reagenti in pribor

- Katalizator v obliki tablet, koncentrirana H₂SO₄, 0,1 M raztopina NaOH, 32 % raztopina NaOH, Tashiro indikator, 0,05 M raztopina H₂SO₄;
- elektronska tehtnica, ladjica za tehtanje, steklene Kjeldahlove epruvete, vrelni kamenčki, grelni blok, destilacijska enota, bireta, erlenmajerice
Postopek

Kislinski razklop

Na elektronski tehtnici natehtajte od 0,30 g do 1,0 g svežega vzorca ali ustreznino manjšo maso posušenega vzorca (odvisno od pričakovane vsebnosti skupnega dušika). Zapišite si maso vzorca in ga prenesite v stekleno epruveto. Dodajte katalizator (2 tableti), 20 ml koncentrirane H₂SO₄ (kislino dodajajte previdno) in vrelne kamenčke. Če je potrebno, dodajte sredstvo proti penjenju. Na epruvete namestite stekleni pokrov in vklopite vodno črpalko za odsesavanje plinov. Epruvete postavite v grelni blok in pri 60 °C in segrevajte 15 minut. Epruvete naj bodo dvignjene od dna bloka 1,5 do 2 cm (višino uravnajte z gumbom Lift). Med postopkom epruvete postopoma spustite nižje v grelni blok, odvisno od intenzivnosti reakcij, ki potekajo med razklopom. Nato temperaturo zvišajte na 360 °C in segrevajte 2 do 3 ure, oziroma tako dolgo, da se raztopine obarvajo zeleno. Po razklopu raztopine ohladite na sobno temperaturo. Po enakem postopku pripravite tudi slepi vzorec (v stekleno epruveto dajte vse reagente brez vzorca).

Destilacija z vodno paro

Previdno dodajte vodo, da se soli popolnoma raztopijo (50 ml) in pri tem sperite rob epruvete. Epruveto nato pritrdite na aparat za destilacijo z vodno paro. K raztopini dodajte prebitek 32 % raztopine NaOH (~100 ml), s katero iz soli ((NH₄)₂SO₄) izpodrimemo NH₃. Pri tem poteče reakcija:

\[(NH_4)_2SO_4 + 2NaOH \rightarrow 2NH_3 + Na_2SO_4 + 2H_2O\]

Amonijak destilirajte z vodno paro v erlenmajerico, v katero ste odpipetirali 25 ml 0,05 M raztopine H₂SO₄ in dodali 8 kapljic Tashiro indikatorja. Konica cevi mora biti ves čas potopljena v raztopino. Pri tem poteče reakcija nevtralizacije:

\[2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4\]

Titracija

Množino prebitne H₂SO₄ titrirajte z 0,1 M raztopino NaOH do spremembe barve indikatorja iz vijoličaste v zeleno.
Izračun

Vsebnost dušika (N) v odstotkih izračunajte po enačbi:

\[
N \,(\%) = \left(\frac{(25 - V_{sr}) - (25 - V_{sl}) \cdot 140}{1000 \cdot m} \right)
\]

\(V_{sr}\) = volumen porabe 0,1 M raztopine NaOH pri titraciji vzorca (ml)
\(V_{sl}\) = volumen porabe 0,1 M raztopine NaOH pri titraciji slepe raztopine (ml)
\(m\) = masa vzorca (g)

Rezultat

Za analizirane vzorce podajte vsebnost skupnega dušika (\%) in vsebnost proteinov. Vsebnost proteinov izračunate z upoštevanjem empiričnih koeficientov.

Uporabljeni viri

3 Določanje koncentracije rastlinam dostopnega bakra v talnih vzorcih s plamensko atomsko absorpcijsko spektrometrijo

Osnovni pojmi: mineralna hranila, baker, ekstrakcija, kislinski razklop, atomska absorpcijska spektrometrija

Namen vaje: Z vodno raztopino dinatrijeve soli etilendiamintetraocetne kisline (Na₂-EDTA) iz talnih vzorcev, odvzetih na površinah z različno rabo tal, ekstrahiramo rastlinam dostopno frakcijo bakra. Pri valovni dolžini (λ=324,7 nm) izmerimo absorbancjo bakra v raztopinah za umiritveno krivuljo, nato z merjenjem absorbancije bakra v ekstraktih talnih vzorcev določimo njegovo koncentracijo.

3.1 Teoretične osnove

Mineralna hranila

Rastline potrebujejo izključno anorganska hranila, kar jih razlikuje od ljudi, živali in številnih vrst mikroorganizmov, ki dodatno kot vir energije potrebujejo tudi organska hranila. Rastline absorbirajo svetlobno energijo, ki jo v procesu fotosinteze izkoristijo za tvorbo ogljikovih hidratov in kisika iz ogljikovega dioksida in vode. Istočasno sprejemajo mineralna hranila iz tal in delno tudi skozi liste. Potrebujejo praktično vse elemente, nepogrešljivih je 13 elementov, ki jih glede na potrebe in zastopanost v rastlini delimo na...
makrohranilne (dušik, fosfor, kalij, kalcij, magnezij in žveplo) in mikrohranilne elemente (bor, baker, železo, mangan, molibden, klor in cink) Za rastline so življenjsko pomembni (esencialni), saj so gradbeni elementi organskih spojin, aktivatorji encimov, imajo elektrokemijsko funkcijo pri vzdrževanju primerne ionske koncentracije in pH vrednosti, so stabilizatorji velikih organskih molekul in koloidnih delcev ter jih ne more nadomestiti noben drug element (Vodnik, 2012).

Ogljik, vodik in kisik, ki jih rastlina pridobi iz vode in ogljikovega dioksida, ne sodijo k mineralnim hranilom, a jih mora za normalno rast sprejeti zadostne količine. Previsoke koncentracije so za rastlino škodljive ali celo toksične, še posebej, če je samo en element prisoten v previsoki koncentraciji. V primeru pomanjkanja rastline razvijejo znake pomanjkanja, ki so značilni za element in povezani z njegovo vlogo v rastlini (Vodnik, 2012).

Mineralna hranila se v tleh nahajajo v prosti in vezani obliki. Okoli 2 % mineralnih hranil je v ionski obliki adsorbiranih na talnih delcih in se lahko izmenjajo z drugimi ioni (izmenljive oblike hranila), manj kot 0,2 % pa je raztopljenih v talni raztopini (vodotopna frakcija). Vodotopna frakcija in izmenljive oblike hranil v tleh predstavljajo količino rastlinam dostopnih hranil. Katione, ki so sorpcijsko vezani na talne koloide, lahko korenine s povečanjem koncentracije vodikovih ionov (H\(^+\)) v njihovi neposredni bližini sprostijo v talno raztopino. Večina preostalih hranil (skoraj 98 %) je vezanih v humusu (organska snov), v slabo topnih anorganskih spojinah in v talnih mineralih ter predstavljajo rezervno obliko hranil v tleh. Rastline lahko izkoriščajo vire nekaterih elementov (npr. N in P), vezanih v organski snovi tal, potem ko encimi razgradijo organske molekule. Encime, ki razgrajujejo organske molekule, izločajo rastline in tudi talni mikroorganizmi. Elementi, ki so vezani v strukturo talnih mineralov, rastlinam praviloma niso dostopni.

Atomska absorpcijska spektrometrija (AAS)

Z AAS merimo koncentracije kovin v raztopinah vzorcev (talni vzorci, rastlinski vzorci, različna živila itd.). Kadar nas zanimajo posamezne frakcije kovin, kot so npr. rastlinam dostopna hranila, trdne vzorce pred meritvami ekstrahiramo z ustrezno raztopino. V primeru, da nas zanima celokupna vsebnost kovin v vzorcu, pa naredimo kislinski razklop. V tem primeru k vzorcu dodamo kislino (HNO\(_3\), HCl ...) ali kombinacijo dveh ali več različnih kislin in vzorec segrejemo.
AAS temelji na merjenju absorpcije svetlobe karakteristične valovne dolžine. Izvor svetlobe je žarnica z votlo katodo, ki oddaja svetlobo določenih valovnih dolžin, ki so karakteristične za posamezen element. Oddano svetlobo absorvirajo prosti atomi v osnovnem energijskem stanju, ki nastanejo v procesu atomizacije, in pri tem preidejo v vzbujeno stanje. Atomizacija poteče po uvajanju vzorca v plamen ali grafitno cevko (atomizator). Količina absorbirane svetlobe (absorbanca) je odvisna od koncentracije elementa v raztopini. Zvezo med intenziteto absorbirane svetlobe (A) in koncentracijo absorbirajoče snovi (ϵ) podaja Beer-Lambertov zakon: $A = \log \left(\frac{I}{I_0} \right) = k \cdot \epsilon$, pri čemer je k konstanta (Skoog, West in Holler, 1996).

Pred analizami raztopin vzorcev umerimo spektrometer s standardnimi raztopinami. To so raztopine z znanimi koncentracijami elementa, ki ga merimo, in so po sestavi (matriksu) čim bolj podobne raztopini vzorca. V plamen (zrak/acetilen ali N$_2$/acetilen) najprej razpršimo slepo raztopino, s katero nastavimo ničlo inštrumenta (instrument zero). Nadaljujemo z raztopino z najnižjo koncentracijo elementa, ki ji sledijo raztopine z naraščajočimi koncentracijami elementa. Programska oprema računalnika nariše umeritveno krivuljo tako, da na x-os nanese koncentracije elementa, na y-os pa izmerjene vrednosti absorbance. Sledijo meritve raztopin vzorcev, pri katerih inštrument izmeri absorbanco, in iz enačbe premice umeritvene krivulje izračuna koncentracijo elementa. Blok shema spektrometra ponazarja glavne komponente instrumenta in vrstni red posameznih stopenj v procesu merjenja.

Slika 3.1: Blok shema inštrumenta za plamensko atomsko absorpcijsko spektrometrijo
Ekstrakcija

Ekstrakcija je postopek, ki ga uporabljamo za izolacijo spojin, čiščenje ekstraktov vzorcev ali selektivno koncentriranje spojin, ki nas zanimajo. Ekstrakcijo uporabimo, kadar želimo iz vzorca dobiti samo določene sestavine (npr. rastlinam dostopne minerale, rastlinske pigmente, sladkorje, kisline, vitamine itd.) ali kot separacijsko tehniko, s katero ločimo določene sestavine vzorca od ostalih, ki bi pri meritvah lahko povzročale motnje, kar je običajno potrebno pred analizami kompleksnih bioloških vzorcev. Tradicionalne ekstrakcijske tehnike, ki jih še vedno uporabljamo, so ekstrakcija trdno-tekoče, ekstrakcija tekoče-tekoče in ekstrakcija po Soxhletu. Pri ekstrakciji trdno-tekoče k trdnemu homogenemu vzorcu dodamo topilo, v katerem je spojina, ki nas zanima, dobro topna.

3.2 Izvedba vaje

Reagenti in pribor

- 0,05 M vodna raztopina dinatrijeve soli etilendiamintetraocetne kisline (Na₂-EDTA), standardna raztopina bakra (Cu, 1 g/l),
- elektronska tehtnica, polietilenske posodice z zamaškom, filtrirni papir, stekleni lijaki, stojalo za lijake, 50 ml merilne bučke, pipeta, stresalnik, mlin za mletje talnih vzorcev.

Postopek

Priprava talnega vzorca

Talni vzorec posušite na zraku do konstantne mase. Odstranite korenine in manjše kamenčke. Vzorec nato zmeljite v mlinu in ga presejte skozi sito s premerom odprtin 1 mm. V tako pripravljenem vzorcu lahko določimo različne parametre, ki so pomembni za kakovost tal.
Ekstrakcija rastlinam dostopnega Cu

V polietilensko posodico natehtajte 5,00 g zmletega vzorca in dodajte 50 ml 0,05 M raztopine Na₂-EDTA. Posodice zaprite z zamaškom in jih na stresalniku stresajte 2 uri. Med ekstrakcijo poteče kationska izmenjava. Natrijevi ioni (Na⁺) iz ekstrakcijske raztopine se izmenjajo z ioni Cu²⁺, ki so adsorbirani na površini talnih delcev. Ekstrakti naj stojijo toliko časa, da se delci usedejo, nato raztopino filtrirajte skozi naguban filtrirni papir. Prvih nekaj ml filtrata zavrzite. V ekstraktih vzorcev izmerite koncentracijo ekstraktibilnega Cu. Količina z EDTA ekstraktibilnih kationov je nekoliko višja, kot jih rastline dejansko sprejmejo iz tal (ÖNORM L 1089, 1993).

Priprava raztopin za umeritveno krivuljo

V 50 ml merilno bučko odpipetirajte 5 ml standardne raztopine Cu (1 g/l) in dopolnite do oznake z demineralizirano vodo. Koncentracija Cu v tako pripravljeni raztopini je 100 µg/ml. Umeritveno krivuljo pripravite v koncentracijskem območju od 0,5 do 4,0 µg/ml Cu. Pripravite razredčitve raztopine Cu s koncentracijo 100 µg/ml tako, da dobite raztopine s koncentracijami Cu 0,5, 1,0, 2,0, 3,0 in 4,0 µg/ml. Raztopine pripravite v 50 ml bučkah. S katero raztopino boste dopolnili bučke do oznake? Kako boste pripravili slepo raztopino?

Merjenje koncentracije Cu

Pred meritvami koncentracije Cu v ekstraktilnih talnih vzorcev nastavite spektrometer s slepo raztopino na ničlo in ga nato umerite z raztopinami z znanimi koncentracijami Cu, ki ste jih pripravili za umeritveno krivuljo. Raztopine razpršite v plamen zrak/acetilen. Ko računalnik izriše umeritveno krivuljo, nadaljujte z meritvami ekstraktov vzorcev. Absorbanco Cu izmerite pri valovni dolžini 324,7 nm.

Rezultat

Za talne vzorce, odvzete na površinah z različno rabo tal in različnim načinom pridelave, podajte vsebnost rastlinam dostopnega Cu v mg/kg zračno suhega vzorca tal in komentirajte rezultate.
Uporabljeni viri

4 Določitev skupnih fenolov z molekulsko absorpcijsko spektrometrijo

Osnovni pojmi: fenolne spojine, antioksidanti, molekulsko absorpcijska spektrometrija

4.1 Teoretične osnove

Fenolne spojine

Fenolne spojine ali polifenoli so sekundarni metaboliti, ki so v rastlinah zelo razširjeni. Nahajajo se v vseh delih rastlin in pomembno vplivajo na organoleptične lastnosti sadja in zelenjave (okus, vonj, barva živil in pijač). Ocenjujejo, da je teh spojin v naravi več kot milijon. Fenolne spojine so heterogena skupina spojin, vsem je skupno, da imajo vsaj en aromatski obroč in vsaj eno hidroksilno skupino. Lahko so enostavne molekule (npr. fenolne kisline) ali visoko polimerizirane spojine, kot so tanini in lignini. Zastopanost
fenolnih spojin v rastlinah je odvisna od vrste rastline, načina pridelave, geografskega območja, stopnje zrelosti in drugih dejavnikov (Dai in Mumper, 2010).

Fenolne spojine se v rastlinah največkrat pojavljajo kot glikozidi (spojine, pri katerih sta alkohol in sladkor povezana z glikozidno vezjo) in imajo različne vloge. Služijo kot zaščita rastlin pri absorpciji UV sevanja, kot obramba pred patogeni in rastlinojedci, nekateri sodelujejo pri mehanski zaščiti rastlin ali pa delujejo kot signalne molekule pri cvetenju in oplojevanju. Na stresne dejavnike se rastlina odzove s povečano biosintezo fenolnih spojin (Taiz in Zeiger, 2006).

Molekulska absorpcijska spektrometrija (MAS)

Molekulska absorpcijska spektrometrija je ena izmed najpogostejše uporabljenih spektroskopskih metod. Uporabna je za določanje anorganskih in organskih zvrst. Pri MAS merimo delež svetlobe, ki jo absorbira raztopina v vidnem ali UV področju valovnih dolžin. Sestavni deli spektrometra so: izvor svetlobe, monokromator, prostor za vzorec (kiveta), detektor in merilni inštrument (Slika 4.1). Metoda temelji na merjenju zmanjšanja intenzitete svetlobe pri prehodu skozi raztopino vzorca. Del svetlobe se absorbira, intenziteto prepuščene svetlobe pa izmeri detektor. Meritve največkrat izvajamo v območju valovnih dolžin vidne svetlobe (valovne dolžine od 400 do 750 nm). Če spojina v vidnem spektralnem področju sama ne absorbira svetlobe, jo z različnimi reakcijami (dodatek ustreznega reagenta) pretvorimo v obarvan proizvod. Koncentracijo analita določimo na osnovi primerjave absorbance za vzorec in standardne raztopine (Skoog, West in Holler, 1996).
Določitev skupnih fenolov z molekulsko absorpcijsko spektrometrijo

4.2 Izvedba vaje

Reagenti in pribor

− Galna kislina, reagent Folin-Ciocalteu, Na₂CO₃, aceton, etanol, led;
− elektronska tehtnica, mlin za mletje svežih vzorcev, terilnica in pestilo, epice (1,5 ml), 50 ml centrifugirke, 10, 25, 50 in 100 ml merilne bučke, 500 ml merilna bučka, pipeta, ultrazvočna kopel, centrifuga, vibracijski stresalnik, inkubator, merilni valj, mikrokivete, stojalo za epice, reagenčna steklenica.

Postopek

Priprava raztopin

− Raztopina Na₂CO₃: Natehtamo 37,5 g Na₂CO₃. Kvantitativno ga prenesemo v 500 ml merilno bučko in dopolnimo z vodo do oznake.
− Reagent Folin-Ciocalteu: V 10 ml merilno bučko odpipetiramo 1 ml raztopine reagenta Folin-Ciocalteu in z vodo dopolnimo do oznake.
- Osnovna standardna raztopina galne kisline: Natehtamo 0,0625 g galne kisline in jo raztopimo v 2–5 ml etanola. Raztopino kvantitativno prenesemo v 25 ml merilno bučko in jo z vodo dopolnimo do znake. Koncentracija galne kisline v raztopini je 2500 µg/ml.

Priprava trdnih vzorcev in ekstrakcija fenolnih spojin

Sveže vzorce sadja in zelenjave zmeljite, da dobite homogen vzorec. V 50 ml centrifugirke natehtajte 1,00 g vzorca in si zapišite maso. Če so bili vzorci posušeni z zamrzovanjem (liofilizirani vzorci), jih zmeljite in v 50 ml centrifugirko natehtajte 0,20 g. Dodajte 10 ml ekstrakcijske raztopine in premešajte na vibracijskem stresalniku. Centrifugirke z vzorci za 20 minut postavite v ultrazvočno kopel, ki jo hladite z ledom. Nato suspenzije centrifugirajte 15 minut pri 7.500 obratih na minuto (rpm). Bistri del odlijete v 50 ml merilno bučko in z vodo dopolnite do oznake. Namesto centrifugiranja lahko vzorec prefiltrirate. Pred meritvami ekstrakte redčite tako, da 1 ml ekstrakta odpipetirate v 25 ml merilno bučko in z vodo dopolinite do oznake. Ekstrakte vzorcev z višjimi vsebnostmi fenolnih spojin (borovnice, maline, višnje...) redčite 0,5 ml/25 ml.

Priprava tekočih vzorcev

Sveže stisnjen pomarančni sok, sok limone in grenivke pred meritvami redčite tako, da odpipetirate 0,25 ml soka v 25 ml merilno bučko in dopolnite z vodo do oznake. Po navodilih skuhajte zeleni in črni čaj. V 50 ml merilno bučko odpipetirajte 1 ml ohlajenega čaja in dopolnite z vodo do oznake. Raztopino premešajte in odpipetirajte 1 ml tako pripravljene raztopine v 50 ml merilno bučko in dopolnite z vodo do oznake. Espresso kavo kvantitativno prenesite v 100 ml merilno bučko in z vodo dopolinite do oznake. Raztopino premešajte in odpipetirajte 0,5 ml tako pripravljene raztopine v 50 ml merilno bučko in dopolinite z vodo do oznake.

Priprava raztopin galne kisline za umeritveno krivuljo

1 ml osnovne standardne raztopine galne kisline (GA) odpipetirajte v 50 ml merilno bučko in z vodo dopolnите do oznake. Koncentracija GA v tako pripravljeni raztopini je 50 µg/ml. Pripravite razredčitve raztopine s koncentracijo GA 50 µg/ml tako, da dobite raztopine s koncentracijami 0,2, 0,6, 1,2, 2,4 in 6,4 µg GA/ml. Raztopine pripravite v 25 ml merilnih bučkah.
Določitev skupnih fenolov z molekulsko absorpcijsko spektrometrijo

Obarvanje fenolnih spojin z reagentom Folin-Ciocalteu

Fenolne spojine, ki so prisotne v ekstraktih vzorcev, reagirajo z reagentom Folin-Ciocalteu v alkalnem mediju in rumeno barvo reagenta spremenijo v modro. V epice (1,5 ml) odpipetirajte 100 µl slepe raztopine, 100 µl raztopin z znano koncentracijo galne kisline in 100 µl ekstrakta vzorca. Dodajte 200 µl redčenega reagenta Folin-Ciocalteu in premešajte na vibracijskem stresalniku. Po 5 minutah in ne kasneje kot v 7 minut dodajte 800 µl raztopine Na₂CO₃. Raztopine ponovno premešajte in pustite stati 2 uri v temi na sobni temperaturi. Čas, potreben za razvoj modre barve, lahko skrajšate tako, da raztopine za 30 minut postavite v inkubator, ki ga predhodno segrejete na 40 °C.

Merjenje koncentracije galne kisline

S slepo raztopino nastavite spektrofotometer na ničlo. Pri valovni dolžini 765 nm izmerite absorbance raztopin z znano koncentracijo galne kisline in nato tudi absorbance ekstraktov vzorcev.

Rezultat

Za analizirane vzorce podajte vsebnost fenolnih spojin v mg GAE (ekvivalent galne kisline) na 100 g vzorca oziroma na 100 ml vzorca.

Uporabljeni viri

5 Določitev sladkorjev s tekočinsko kromatografijo visoke ločljivosti

Osnovni pojmi: ogljikovi hidrati, monosaharidi, disaharidi, tekočinska kromatografija, kromatogram

Namen vaje: Iz vzorcev živil z vodo ekstrahiramo vodotopne sladkorje. Koncentracijo glukoze, fruktoze in saharoze določimo z RI detektorjem po ločitvi spojin na kromatografski koloni.

5.1 Teoretične osnove

Ogljikovi hidrati

Ogljikovi hidrati so najbolj razširjene organske spojine v naravi. Gradijo jih trije elementi: ogljik, vodik in kisik. Proizvajajo jih rastline s fotosintezo, pri kateri kot primarni proizvod nastane glukoza. Po nekaterih ocenah se letno s fotosintezo veže okoli 200 milijard ton CO₂ in proizvede okoli 400 milijard ton O₂. Ogljikovi hidrati se v rastlinah nahajajo v prosti obliki ali pa kot sestavni deli večjih makromolekul. Služijo kot vir energije, ki jo celice iz njih sproščajo v procesu dihanja. Sproščena energija se skladišči v molekulah adenozin trifosfata (ATP). Najpomembnejša monosaharida v naravi sta glukoza (imenovana tudi grozdnni in krvni sladkor) in fruktoza (sadni sladkor). Nahajata se skupaj s saharozo (disaharid) v plodovih sadja, semenih, listih, cvetovih rastlin in medu. Glavna

V zrelih plodovih predstavlja skupna količina sladkorjev od 2 do 65 % sveže snovi. V zelenih plodovih sadja prevladuje škrob, ki se med dozorevanjem spremeni v enostavne sladkorje. Živali in ljudje ogljikove histrate zaužijemo s hrano rastlinskega izvora. Za razliko od rastlin je količina ogljikovih hgidratov v živalskih tkivih nizka (pri človeku < 1 %).

Ogljikovi hidrati zagotavljajo energijo, ki je potrebna za normalen potek življenjskih funkcij, hkrati se uporabljajo za doseganje želene teksture živil. Monosaharidi (glukoza, fruktoza, manoz) in disaharidi (saharoza, maltoza, laktoza) imajo visok glikemični indeks in se po zaužitju hitro absorbirajo v kri. Zaradi povišanja koncentracije krvnega sladkorja se poveča izločanje inzulina. Več kot 50 % dnevno potrebne energije naj bi zagotovili z uživanjem ogljikovih hgidratov, pri tem monosaharidi in disaharidi naj ne bi prispevali več kot 10 % (Hlastan Ribič, 2009).

Tekočinska kromatografija visoke ločljivosti (HPLC)

Pojem kromatografija je uvedel ruski botanik Cvet, ki je razvil metodo za ločevanje rastlinskih pigmentov. Pri kromatografskih metodah gre za postopke ločevanja, identifikacije in/ali kvantitativne določitve kemijskih spojin. Spojine, ki so prisotne v raztopini vzorca (npr. sladkorji v sokovih, organske kisline v ekstraktih sadja), se ločijo zaradi različne porazdelitve med stacionarno in mobilno fazo. Kako se bo določena spojina porazdeljevala med obe fazi, je odvisno od polarnosti in prisotnosti funkcionalnih skupin, v nekaterih primerih od hlapnosti in velikosti molekule. Stacionarna faza je največkrat v kromatografski koloni in se med procesom ne premika. Mobilna faza potuje skozi kromatografsko kolono. Pri tekočinski kromatografiji je mobilna faza tekočina (voda, organska topila, vodne pferske raztopine).

Slika 5.1: Tekočinski kromatograf in shema sistema za tekočinsko kromatografijo
Vir: lasten
5.2 Izvedba vaje

Reagenti in pribor

- Glukoza, saharoza, fruktoza, dvakrat demineralizirana voda;
- elektronska tehtnica, centrifuga, 50 ml centrifugirke, stojalo za centrifugirke, epice (1,5 ml), 25 ml merilne bučke, pipeta, ultrazvočna kopel, vibracijski stresalnik, terilnica in pestilo, merilni valj, viala za HPLC, stojalo za viala.

Postopek

Priprava vzorcev in ekstrakcija sladkorjev

Vzorce sadja in zelenjave zmeljite v mlinu ali strite v terilnici. V 50 ml centrifugirke natehtajte od 0,40 do 0,70 g suhega vzorca oziroma od 1,50 do 2,00 g svežega homogeniziranega vzorca in si zapišite maso. Dodajte 20 ml vode, suspenzije premešajte na vibracijskem stresalniku (1 minuto) in jih postavite v ultrazvočno kopel, segreto na 80–85 °C (30 minut). Ekstrakte ohladite na sobno temperaturo in centrifugirajte 15 minut pri temperaturi 23 °C in 8.500 obratih na minuto. Supernatant kvantitativno prelijte v 25 ml bučko in dopolnite z vodo do oznake. Premešajte, prelijte v epice in centrifugirajte (10.500 obratov na minuto, 10 °C, 20 minut). Centrifugiranje lahko nadomestimo s filtriranjem raztopin skozi 0,45 µm filter.

Priprava raztopin posameznih sladkorjev za umeritveno krivuljo

Pri pripravi raztopin z znano koncentracijo posameznih sladkorjev uporabite že pripravljene osnovne standardne raztopine glukoze, fruktoze in saharoze s koncentracijo 20 mg/ml. Volumne posamezne raztopine (Preglednica 5.1) odpipetirajte z elektronsko pipeto v 1,5 ml epice, dodajte vodo in premešajte. Raztopine prenesite v viala za HPLC. Za pripravo raztopin uporabite dvakrat demineralizirano vodo.

Preglednica 5.1: Priprava raztopin z znanimi koncentracijami sladkorjev

<table>
<thead>
<tr>
<th></th>
<th>Glukoza</th>
<th></th>
<th>Fruktoza</th>
<th></th>
<th>Saharoza</th>
<th></th>
<th>Voda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V(µl)</td>
<td>Y (mg/ml)</td>
<td>V(µl)</td>
<td>Y (mg/ml)</td>
<td>V(µl)</td>
<td>Y (mg/ml)</td>
<td>µl</td>
</tr>
<tr>
<td>Std₁</td>
<td>25</td>
<td>0,50</td>
<td>25</td>
<td>0,50</td>
<td>25</td>
<td>0,50</td>
<td>925</td>
</tr>
<tr>
<td>Std₂</td>
<td>50</td>
<td>1,00</td>
<td>50</td>
<td>1,00</td>
<td>400</td>
<td>8,00</td>
<td>500</td>
</tr>
<tr>
<td>Std₃</td>
<td>200</td>
<td>4,00</td>
<td>200</td>
<td>4,00</td>
<td>200</td>
<td>4,00</td>
<td>400</td>
</tr>
<tr>
<td>Std₄</td>
<td>400</td>
<td>8,00</td>
<td>400</td>
<td>8,00</td>
<td>50</td>
<td>1,00</td>
<td>150</td>
</tr>
</tbody>
</table>
Določitev koncentracije sladkorjev

Koncentracijo sladkorjev izmerite s tekočinsko kromatografijo visoke ločljivosti v povezavi z detektorjem za merjenje lomnega količnika (RI-detektor). Viale z raztopinami sladkorjev in ekstraktov vzorcev vstavite v avtomatski podajalnik vzorcev in sledite navodilom asistenta.

Kromatografski pogoji:

- kromatografska kolona RCM-Monosaccharide Ca²⁺ (8 %),
- pretok mobilne faze 0,4 ml/minuto (dvakrat demineralizirana voda),
- temperatura kolone 60 °C,
- volumen injiciranega vzorca oziroma standardne raztopine sladkorjev: 20 µl.

Rezultat

Podajte vsebnost posameznih sladkorjev v mg/100 g živila. Rezultate prikažite tabelarično.

Uporabljeni viri

6 Določitev izmenljivih frakcij svinca v talnih vzorcih z atomsko absorpcijsko spektrometrijo

Osnovni pojmi: svinec, emisijske vrednosti, vodotopna frakcija, mobilna in potencialno biorazpoložljiva frakcija, kislinski razklop, celokupna koncentracija, atomska absorpcijska spektrometrija

Namen vaje: Iz talnega vzorca z vodo ekstrahiramo vodotopno frakcijo svinca. Z dodatkom 0,01 M raztopine CaCl₂ ekstrahiramo mobilno in potencialno biorazpoložljivo frakcijo. Za določitev celokupne vsebnosti svinca naredimo kislinski razklop vzorca z dodatkom koncentrirane HCl: HNO₃ v volumskem razmerju 3 : 1 (v/v). Koncentracije svinca v pripravljenih raztopinah vzorčev izmerimo z merjenjem absorbance pri izbrani valovni dolžini na spektrometru za AAS.

6.1 Teoretične osnove

Svinec

Svinec je strupena kovina, ki predstavlja tveganje za zdravje ljudi. Na prioritetnem seznamu nevarnih snovi, na katereg je Agencija za strupene snovi in register bolezni (ATSDR, 2019) uvrstila 275 snovi, je svinec na drugem mestu. Pri razvrstitvi snovi po strupenosti so upoštevali kombinacije več dejavnikov: njihovo pogostost v okolju, toksičnost in izpostavljenost ljudi.
Svinec je element, ki je v manjših količinah naravno prisoten v zemeljski skorji. Kadar celokupna vsebnost svinca v tleh ne presega mejne emisijske vrednosti (85 mg/kg suhih tal), so tla neonesnažena. V takšnih tleh lahko pride do onesnaženja pridelkov z drugimi viri (onesnažena voda, zrak, nepravilna uporaba sredstev za zaščito rastlin). Pri vsebnosti svinca 100 mg/kg so tla po zakonodaji onesnažena in obstaja velika verjetnost, da kovina prehaja iz tal v vrtnine. Pri vsebnosti 530 mg/kg (kritična emisijska vrednost) tla niso primerna za pridelavo rastlin, ki se uporabljajo v prehrani ljudi in živali (Uredba o mejnih, opozorilnih in kritičnih vrednostih nevarnih snovi v tleh, 1996). Poznavanje celokupnih vsebnosti težkih kovin v talnih horizontih pove le malo o njihovistrupenosti za organizme, zato se za prikaz dejanske možne nevarnosti za človeka in okolje vedno bolj uporablja biodostopnost, ki je opredeljena kot delež onesnažila v tleh, ki je organizmu takoj dosegljiv.

Težke kovine so vezane na različne frakcije tal. Od vezave je odvisna njihova dostopnost za organizme. Kovine, vgrajene v kristalne strukture mineralov, so razmeroma neaktivne. Rastlinam dostopne so tiste kovine, ki se v ionski obliki nahajajo v talni raztopini, in tiste, ki so adsorbirane na površini talnih koloidov. Ostale oblike, ki so vezane na karbonate, na železove, manganove ali aluminijeve okside, in tiste, ki tvorijo komplekse z organsko snovjo tal, lahko obravnavamo kot relativno mobilne ali trdno vezane, odvisno od kombinacije fizikalnih in kemijskih lastnosti tal. Najpomembnejše lastnosti tal, ki vplivajo na mobilnost kovin in razpoložljivost, so tekstura (delež gline), pH-vrednost, vsebnost organske snovi, redoks potencial, železovi in manganovi oksidi ter kationi in anioni v talni raztopini, ki v tleh pogosto tekmujejo za ista sorpcijska mesta (Marschner, 1995).

Običajno je v naravnih tleh rastlinam dostopna frakcija težkih kovin majhna. V naravnih tleh, ki so nastala na matični kamnini, bogati s kovinami, in v onesnaženih tleh, lahko rastlinam dostopna frakcija predstavlja tudi od 30 do 60 % celokupne vsebnosti kovin. Svinec ostaja v vrhnjih plasteh tal zaradi močne vezave na sorpcijski kompleks.

Atomska absorpcijska spektrometrija

Teoretične osnove glej vajo 3.
6.2 Izvedba vaje

Reagenti in pribor

- Koncentrirana HCl in HNO₃, 1,0 M vodna raztopina MgCl₂ (pH = 7,0), 1,0 M raztopina amonijevega acetata (pH = 5,0), CH₃COOH, standardna raztopina Pb (1 g/l);
- elektronska tehtnica, centrifuga, terilnica in pestilo, plastično sito, izparilnice, polietilenske posodice z zamaškom, centrifugirke, filtrirni papir, lijaki, 50 ml merilne bučke, merilni valj, pipeta, stresalnik, peščena kopel.

Postopek

Priprava talnega vzorca

Talne vzorce posušimo na zraku, zdrobimo v terilnici in presejemo skozi plastično sito.

Kislinski razklop vzorca za določitev celokupne vsebnosti svinca

Ekstrakcija posameznih frakcij Pb

F1: Topna in izmenljiva frakcija

V polietilensko posodico natehtajte 2,5 g talnega vzorca in dodajte 20 ml 1,0 M raztopine MgCl₂ (pH = 7,0). Posodice zaprite in jih pri sobni temperaturi stresajte 1 uro na stresalniku. Nato vzorce centrifugirajte 15 minut pri 5.000 rpm, bistri del prelijte v polietilensko posodico in jih do analize hranite v hladilniku.
F2: Frakcija vezana na karbonate

K trdnemu preostanku (F1) dodajte 20 ml 1,0 M raztopine amonijevega acetata s pH vrednosti 5,0 (pH raztopine nastavite z raztopino CH$_3$COOH). Posodice zaprite in jih pri sobni temperaturi 4 ure stresajte na stresalniku, nato vzorce prefiltrirajte. Vsak vzorec pripravite v dveh ponovitvah. Izmenljiv svinec (F1) in svinec, ki je vezan na karbonate (F2), je biodostopen (potencialno razpoložljiv za privzem v rastline) (Jena, Gupta, Dhundhel, Matic, Frančišković Bilinski in Devic, 2013).

Določanje koncentracije Pb z atomsko absorpcijsko spektrometrijo

V 50 ml merilno bučko odpipetirajte 5 ml standardne raztopine Pb (1 g/l) in dopolnite do oznake z demineralizirano vodo. Koncentracija Pb v raztopini je 100 µg/ml. Pripravite raztopine za tri umeritvene krivulje: za vodotopno in mobilno frakcijo Pb v koncentracijskem območju od 0,5 do 2 µg/ml, za celokupno koncentracijo Pb pa v območju od 1 do 16 µg/ml. Izračunajte volumne standardne raztopine Pb s koncentracijo 100 µg/ml, ki jih boste odpipetirali v 50 ml merilne bučke, da bodo koncentracije Pb v pripravljenih raztopinah 0,5, 1,0, 1,5, 2,0, 4,0, 8,0 in 16,0 µg/ml. S katero raztopino boste dopolnili bučke do oznake? Kako boste pripravili slepe raztopine?

Merjenje koncentracije Pb

Konzentracije Pb v pripravljenih raztopinah boste izmerili na spektrometru za plamensko AAS. V spektrometer najprej razpršite raztopine z znano koncentracijo Pb, ki ste jih pripravili za umeritveno krivuljo, nato nadaljujete z meritvami ekstraktov vzorcev. Ekstrakte vzorcev (mobilna in potencialno razpoložljiva frakcija Pb) in raztopine po kislinskem razklopu vzorcev (celokupna vsebnost) merimo neposredno, brez predhodnega redčenja. Absorbanco Pb v raztopinah izmerite pri valovni dolžini 217 nm.

Rezultat

Uporabljeni viri

7 Določitev vsebnosti oksalatov v sadju in zelenjavi s tekočinsko kromatografijo visoke ločljivosti

Osnovni pojmi: vodotopni oksalati, celokupni oksalati, idioblasti, tekočinska kromatografija

Namen vaje: Iz vzorcev sadja in zelenjave z vodo ekstrahiramo vodotopne oksalate in z 2 M raztopino HCl celokupne oksalate. Po ločitvi na kromatografski koloni izmerimo koncentracijo oksalatih ionov v ekstraktih vzorcev z merjenjem absorbance pri izbrani valovni dolžini na PDA detektorju.

7.1 Teoretične osnove

Oksalati

so kalijeve, natrijeve in amonijeve soli, netopne pa kalcijeve in magnezijeve soli. V rastlinskih celicah se oksalati nalagajo izven vakuole v posebnih celičnih strukturah, ki jih imenujemo kristalni idioblasti.

Oksalati so metabolični proizvodi rastlin, ki zaradi negativnih učinkov predstavljajo neželeno snov v človekovi prehrani. Oksalna kislina nastaja v telesu sesalcev kot stranski proizvod pri metabolizmu vitamina C in soli glioksalne kisline (Liebman in Al-Wahsh, 2011), zato lahko z dodatnim vnašanjem oksalne kisline s hrano pripomorimo k nastanku ledvičnih kamnov in prekomernemu izločanju oksalatov z urinom (Gupta, 2007). Glavni vir oksalatov v človekovi prehrani so živila rastlinskega iz vora. Med živila z visokimi vsebnostmi sodijo rabarbara, špinača, rdeča pesa, bezgove jagode, karambola, črni čaj, kakav, leguminoze (arašidi, fižol, soja), agava, nekateri oreščki, kasava in taro (Massey, 2007). Na njihovo vsebnost v hrani lahko vplivamo s procesi predelave.

Ekstrakcija

Teoretične osnove ekstrakcije glej vajo 3.

Tekočinska kromatografija visoke ločljivosti (HPLC)

Teoretične osnove tekočinske kromatografije glej vajo 5.

7.2 Izvedba vaje

Reagenti in pribor

− 2 M raztopina HCl, 12,5 mM vodna raztopina H₂SO₄, standardna raztopina C₂O₄²⁻ (1 g/l), dvakrat demineralizirana voda;
− elektronska tehtnica, vodna kopel, centrifuga, mlin za mletje svežih in suhih vzorcev, terilnica in pestilo, steklene posodice z zamaškom, pipete, epice, 10 in 25 ml merilne bučke, 50 ml centrifugirke, merilni valj, 0,45 µm filtri za brizge, viale za HPLC.
Postopek

Priprava vzorcev

Vzorce sadja in zelenjave zmeljite ali pa jih najprej posušite in nato zmeljite.

Ekstrakcija vodotopnih in celokupnih oksalatov

V steklene posodice natehtajte okoli 0,10 g posušenega in zmletega vzorca. Če pripravljate sveže vzorce, natehtajte od 2,0 do 5,0 g vzorca, odvisno od pričakovane vsebnosti oksalatov, in si zapišite maso. Vsak vzorec natehtajte v dveh ponovitvah. Za ekstrakcijo vodotopnih oksalatov k vzorcu dodajte 15 ml dvakrat demineralizirane vode, za ekstrakcijo skupnih oksalatov (vodotopni in netopni) pa 15 ml 2 M raztopine HCl. Posodice zaprite z zamaškom, ročno stresite in jih za 15 minut postavite na vodno kopel, oglejte na 80 °C (Kristl, Sem, Mergeduš, Zavišek, Ivančič in Lebot, 2021). Po končani ekstrakciji suspenzije ohladite na sobno temperaturo in jih prelijte v 50 ml centrifugirke. Centrifugirajte 15 minut pri 10 °C in 8.000 obratih na minutu. Po centrifugiranju svežih vzorcev bistri del kvantitativno prenesite v 25 ml bučke in jih dopolnite do oznake z vodo. Premesajte in ekstrakte prefiltrirajte skozi 0,45 μm filter v viala. Če za analizo uporabite posušene vzorce, jih po centrifugiranju samo prefiltrirajte v viala za HPLC.

Priprava raztopin \(\text{C}_2\text{O}_4^{2-} \) za umeritveno krivuljo

Umeritveno krivuljo pripravite v koncentracijskem območju 10–100 μg \(\text{C}_2\text{O}_4^{2-} / \text{ml} \). Raztopine s koncentracijo ionov \(\text{C}_2\text{O}_4^{2-} \) 10, 20, 40, 60 in 100 μg/ml pripravite v 10 ml merilnih bučkah. V osnovni standardni raztopini je koncentracija ionov \(\text{C}_2\text{O}_4^{2-} \) 1.000 μg/ml. Izračunajte volumne osnovne standardne raztopine, ki jih boste odpipetirali za pripravo raztopin za umeritveno krivuljo. Za dopolnjevanje merilnih buček uporabite dva krat demineralizirano vodo.

Določitev koncentracije \(\text{C}_2\text{O}_4^{2-} \)

Koncentracijo ionov \(\text{C}_2\text{O}_4^{2-} \) v ekstraktih vzorcev določimo s tekočinsko kromatografijo visoke ločljivosti. Viale z raztopinami z znano koncentracijo ionov \(\text{C}_2\text{O}_4^{2-} \) in ekstrakte vzorcev vstavite v avtomatski podajalnik vzorcev. Intenziteto absorbirane svetlobe izmerite pri valovni dolžini 210 nm s PDA-detektorjem.
Kromatografski pogoji:

- kromatografska kolona Rezex ROA-organic acid H+ (300 × 7,8 mm),
- pretok mobilne faze 0,5 ml/minuto (12,5 mM vodna raztopina H₂SO₄),
- temperatura kolone 25 °C,
- volumen injiciranega vzorca oziroma standardne raztopine oksalatih ionov: 20 μl.

Rezultat

Podajte vsebnost vodotopnih, netopnih in skupnih oksalatov v mg/100 g vzorca in komentirajte rezultate.

Uporabljeni viri

8 Kvalitativna določitev nitrata v zelenjavi

Osnovni pojmi: nitrat, nitrit, methemoglobinemija, kvalitativna določitev, testni lističi

Namen vaje: Ekstrakcijo nitrata in nitrita iz vzorcev zelenjave izvedemo z dodatkom vode. Koncentracijo nitrata in nitrita v ekstraktih vzorcev in pitne vode ocenimo s testnimi lističi Quantofix.

8.1 Teoretične osnove

Nitrat

Na vsebnost nitratov v sveži zelenjavi vplivajo biološki dejavniki (vrsta rastline, rastlinski organ, zrelost rastline), dejavniki okolja in kmetijski dejavniki (sestava tal, založenost z dušikom, vlažnost tal, intenziteta osvetlitve, temperatura, letni čas, način pridelave). Po spravilu pridelka sta pomembna dejavnika skladiščenje in procesiranje zelenjave. Pri skladiščenju zelenjave na sobni temperaturi se vsebnost nitratov v nekaj dneh zniža na račun povečanja vsebnosti nitritov, do česar pride zaradi mikrobiološke redukcije nitrata v nitrit (nitrat reduktaza) (Shaid Umar in Iqbal, 2007).

Prve omejitve za vsebnost nitratov so bile postavljene za pitno vodo. Po evropskih normativih je dopustna vsebnost nitratov v pitni vodi 25 mg/l. V Sloveniji veljavni predpisi dopuščajo vsebnost nitratov 50 mg/l in nitritov 0,50 mg/l (ARSO, 1996). Najbolj znan škodljiv učinek nitritov, ki nastanejo po redukciji nitratov, na zdravje ljudi je pojav methemoglobinemije. Nitrit reagira z Fe2+ v hemoglobinu, pri čemer nastane methemoglobininie. Nitrit reagira z Fe2+ v hemoglobinu, pri čemer nastane methemoglobin, ki moti prenos kisika v tkiva (Katan, 2009).

8.2 Izvedba vaje

Reagenti in pribor

− Testni lističi quantofix nitrat/nitrit;
− elektronska tehtnica, nož, nož za lupljenje, deska za rezanje, 600 ml plastične čaše, palični mešalnik, filtrirni papir, 50 ml polietilenske posodice, merilni valj (100 ml).
Postopek

Homogenizacija vzorca in ekstrakcija nitratov

Rezultat

Vsebnost nitrata in nitrita podajte v mg/100 g vzorca. Na osnovi kvalitativno ocenjenih vrednosti nitrata v posamezni zelenjavi izračunajte, kakšen je prispevek zaužitja 100 g posamezne vrste zelenjave k dovoljenem dnevnomu vnosu nitrata v telo. Vrednost ADI (maksimalni sprejemljiv dnevni vnos, Acceptable Daily Intake) poiščite v literaturi.

Uporabljeni viri

9 Spektrofotometrično določanje skupnega cianida

Osnovni pojmi: cianid, cianogeni glikozidi, encimska hidroliza, pikratni papir, toksičnost

Namen vaje: V vzorcih določimo vsebnost skupnega cianida s pikratno metodo, ki je osnovana na reakciji vodikovega cianida (HCN) in rumenega pikrata, pri čemer nastane izopurpurna kislina, ki je rdeče barve. Vzorcem dodamo encim ß-glukozidazo, ki razgradi cianogene glikozide. Pri encimski hidrolizi sproščen HCN se veže na pikratni papir in nastane izopurpurna kislina, ki jo raztopimo v vodi. Pri izbrani valovni dolžini s spektrofotometrom izmerimo intenziteto absorpcije rdeče obarvane raztopine.

9.1 Teoretične osnove

Cianogeni glikozidi so rastlinski sekundarni metaboliti. V rastlinah imajo pomembno vlogo pri obrambi pred rastlinojedci in žuželkami (insekti). So vodotopne in dokaj stabilne spojine. Sinteza cianogenih glikozidov se začne iz α-aminokisline (valin, izolevcin, levcin, triozin, fenilalanin). Cianogeni glikozidi so zgrajeni iz α-hidroksinitrila, na katerega je z glikozidno vezjo vezan sladkor. Glede na število sladkornih enot, ki so vezane na aglikonski obroč, spojine delimo na: monosaharidni cianogeni glikozidi (prunasin, durin, linamarin), disaharidni (amigdal in linustatin), trisaharidni ali polisaharidni cianogeni glikozidi (lucumin, kserantin, vicianin, oksiantin) (Vetter, 2000). V postopku, ki ga imenujemo cianogeneza, pride do stika med cianogenimi glikozidi, ki se nahajajo v vakuoli,
in β-glikozidazo. Poteče hidroliza, pri kateri se cepi β-glikozidna vez in nastane nestabilni cianohidrin. Ta spontano ali s pomočjo encima hidroksinitril liaze razpade na vodikov cianid (HCN) (Slika 9.1).

![Diagram](https://via.placeholder.com/150)

Slika 9.1: Encimsko katalizirana hidroliza cianogenih glikozidov

Toksičnost živil ocenimo s količino sproščenega cianida in njegove absorpcije. Za živila običajno podajamo koncentracijo HCN. Po podatkih EFSA (2019) so vsebnosti HCN v mletih mandljih 1,4 mg/kg, v marcipanu od 15 do 50 mg/kg in v mareličnih koščicah od 120 do 4000 mg/kg. Akutna letalna doza (LD$_{50}$) za ljudi je od 0,5 do 3,5 mg HCN/kg telesne teže.

Vsebnost cianidnih ionov (CN⁻) v vzorcih živil bomo določili s pikratno metodo, ki je osnovana na reakciji HCN in rumenega pikrata pri čemer nastane izopurpurna kislina, ki je rdeče barve. Postopek izvedemo v treh stopnjah: (1) priprava vzorca, (2) razgradnja cianogenih glikozidov s pomočjo β-glukozidaze in vezava sproščene HCN na pikratni papir ter (3) raztapljanje izopurpurne kisline v vodi in meritev intenzitete barve raztopine s spektrofotometrom.
9.2 Izvedba vaje

Reagenti in pribor

- Raztopina pikrinske kisline (1 %), Na₂CO₃, amigdalina, β-glukozidaza, KH₂PO₄, Na₂HPO₄ · 2H₂O, led;
- elektronska tehtnica, steklene viale z zamaškom (headspace viale), sterilizator, centrifuga, filtrirni papir Whatman No. 1, petrijevka, epice, stojalo za viale in epice, 10, 25 in 100 ml merilne bučke, 1.000 ml merilna bučka, 50 ml čaša, rotacijski stresalnik, semi- in mikrokivete, pipeta, klešče za trenje koščic, kavni mlinček, ravnilo, plastični trak.

Postopek

Priprava raztopin

- Raztopina fosfatnega pufra (pH = 5): natehtamo 9,0786 g KH₂PO₄ in ga z vodo raztopimo v 1.000 ml merilni bučki (raztopina A). Natehtamo 11,876 g Na₂HPO₄ · 2H₂O in ga raztopimo v 1.000 ml vode (raztopina B). V 100 ml merilno bučko odpipetiramo 0,95 ml raztopine B in do oznake dopolnimo z raztopino A.
- Raztopina β-glukozidaze: V 10 ml merilno bučko s pipeto kanemo 1 kapljico encima (> 2 mg) in z raztopino pufra dopolnimo do oznake.
- Raztopina Na₂CO₃: 1 g Na₂CO₃ raztopimo v 9,5 ml vode.
- Raztopina pikrinske kisline: zmešamo 10 ml pripravljene pikrinske kisline in 10 ml raztopine Na₂CO₃.
- Raztopina amigdalina: natehtamo 50 mg amigdalina in ga raztopimo v 25 ml merilni bučki. Raztopino pripravimo v fosfatnem pufru (pH = 5). Koncentracija cianidnih ionov v raztopini je 113,76 µg/ml.

Priprava vzorcev in pikratnega papirja

Lanena semena, mandlje in bambusove vršičke zmeljite. Koščice sliv in češenj najprej zdrobite s kleščami in nato zmeljite v kavnem mlinčku. Pri marcipanu in persipanu priprava vzorca ni potrebna.
Filtrirni papir narežite na točno 1 cm široke trakove. Raztopino pikrinske kisline prelijte v petrijevko in vanjo potopite trakove filtrirnega papirja. Papir nato posušite in ga hranite v hladilniku v zaprti temni posodi.

Encimska hidroliza cianogenih glikozidov

V steklene vile natehtajte od 40 do 300 mg vzorca, odvisno od pričakovane koncentracije cianidnih ionov. Viale postavite na led. Dodajte 1 ml raztopine fosfatnega pufra (pH = 5.0) in 200 µl raztopine β-glukozidaze. Pri večjih masah vzorca (300 mg) dodajte 2 ml raztopine pufra. Vstavite pikratni papir velikosti 1 cm × 1 cm (ne sme se dotikati raztopine), ki ste ga predtem s sponko pritrdili na plastični trak in vialo takoj zaprite s pokrovom (Slika 9.2). Vsak vzorec pripravite v treh ponovitvah. V naslednjih 9 vial ponovno natehtajte vzorec mandljev, marcipana in lanenih semen. Dodajte 1 ml raztopine pufra. Encima ne dodajte.

![Slika 9.2: Viale z vzorcem in vstavljenim pikratnim papirjem](Foto: Luka Grgurič)

Priprava raztopin z znano koncentracijo cianidnih ionov (CN⁻)

Umeritveno krivuljo cianidnih ionov pripravite v koncentracijskem območju 4 do 18 µg/ml. Za pripravo umeritvene krivulje uporabite amigdalin. V serijo 10 ml bučk odpipetirajte 0,351, 0,703, 1,055 in 1,582 ml raztopine amigdalina in dopolnite do oznake s fosfatnim pufrom. Koncentracije cianidnih ionov v posamezni raztopini so: 4,0, 8,0, 12,0 in 18,0 µg/ml. V viali, ki ste jih postavili na led, odpipetirajte 1 ml raztopine cianidnih ionov, dodajte 200 µl raztopine β-glukozidaze, namestite pikratni papir in viale takoj zaprite. Vsako točko umeritvene krivulje pripravite v treh ponovitvah. Za slepo raztopino odpipetirajte 1 ml raztopine fosfatnega pufra. Viale postavite za vsaj 20 ur (čezi noč) v sušilnik, segret na 40 °C. Naslednji dan vse raztopine ohladite na sobno temperaturo. Papir
prenesite v 1,5 ml epice, dodajte 1 ml vode in pustite stati 30 minut. Če raztopine po odstranitvi filtrirnega papirja niso bistre, jih centrifugirajte.

Merjenje koncentracije cianidnih ionov (CN⁻)

S slepo raztopino nastavite ničlo spektrometra, nato ga umerite z raztopinami cianidnih ionov in izmerite absorbance raztopin vzorcev. Meritve izvedite pri valovni dolžini 510 nm.

Rezultat

Rezultat je vsebnost HCN v mg/kg vzorca. Primerljajte in komentirajte rezultate, ki ste jih za iste vzorce dobili z in brez dodatka encima.

Uporabljeni viri

10 Določitev žveplovega dioksida (SO₂) v vinu po Rebeleinu

Osnovni pojmi: vino, žveplov dioksid, konzervans, antioksidant, alergen, titracija

Namen vaje: V vinu določimo vsebnost skupnega in prostega SO₂ po Rebeleinu. Vzorec vina destiliramo in destilat zbiramo v prebitku raztopine kalijevega jodata (KIO₃). Po dodatku škrobovice določimo koncentracijo skupnega SO₂ s titracijo z raztopino natrijevega tiosulfata (Na₂S₂O₃). Vsebnost prostega SO₂ v vinu določimo s titracijo vzorca z raztopino KIO₃. Indikator je škrobovica, s katero izločen jod v končni točki titracije obarva raztopino modro.

10.1 Teoretične osnove

Žveplov dioksid

Žveplov dioksid (SO₂) in sulfiti (E220-E228) se tradicionalno uporabljajo kot antioksidanti in konzervansi v zelenjavnih in sadnih izdelkih (sadni sok, sirup, marmelade), suhem sadju, pivu, nekaterih svežih klobasah (»sausages«), mesu hamburgerjev z najmanj 4 % zelenjave, zamrznjenih morskih sadežih, piškotih in vinu. Podrobnejše podatke o živilih, ki jim aditive lahko dodamo, in najvišjih dovoljenih vsebnostih najdemo v Uredbi (ES) št. 1333/2008 evropskega parlamenta in sveta (2008).
Po navedbah Svetovne zdravstvene organizacije (WHO) so aditivi za živila snovi, ki jih dodajamo živilom za ohranjanje ali izboljšanje varnosti, svežine, okusa, teksture ali videza hrane. Aditiv se lahko uporabi za živila šele po opravljeni oceni tveganja, ki ne predstavlja nevarnosti za zdravje ljudi. Priporočila izda skupni strokovni odbor FAO/WHO za aditive za živila (JECFA). Žveplov dioksid in sulfiti veljajo za alergene v skladu z Uredbo (EU) št. 1169/2011 o zagotavljanju informacij o živilih potrošnikom. Za predpakirana živila mora biti njihova prisotnost v živilu ali pijači navedena na etiketi s polnim imenom, kadar vsebnost presega 10 mg/kg ali 10 mg/l (izraženo kot SO₂). Na izdelkih, za katere seznam sestavin ni potreben (npr. alkoholne pijače z več kot 1,2 vol % alkohola), mora biti prisotnost alergena na etiketi navedena (npr. vsebuje žveplov dioksid, vsebuje sulfit). Pri občutljivih ljudeh povzročijo dermatitis, koprivnico, hipote nzijo, bolečine v trebuhu in drisko. Posebna tvegana skupina so bolniki z astmo (4–10 % populacije), saj je lahko vnos manj kot 10 mg sulfita dovolj, da sproži napad astme (Vally in Misso, 2012).

Žveplov dioksid in sulfiti se v živilsko-prehranski industriji uporabljajo kot konzervansi hrane, saj preprečujejo rast mikrobov. Hkrati delujejo kot antioksidanti s sposobnostjo zaviranja oksidacijskega encima polifenol-oksidaze, ki katalizira potemnitev izdelkov iz sadja in zelenjave. V vinarstvu se SO₂ dodaja v mošt in vino za preprečevanje aktivnosti oksidacijskih encimov (npr. polifenol-oksidaze in peroksidaze) in kemijskih oksidacij, za preprečevanje rasti neželenih bakterij, kot so mlečnokislinske in ocetnokislinske bakterije in kvasovk (npr. iz rodu Brettanomyces, ki sodelujejo pri nastanku neprijetnih vonjev vina), za zakasnitev ali preprečevanje nastanka spojin, ki povzročajo rjavenje, in za vezavo s porabniki žvepla (acetaldehid, α-ketoglutarat, piruvat, polifenoli vina, sladkorji itd.). Neželeni učinki SO₂ so nevtralizacija arome vina, neprijeten okus in vonj ter nastanek vodikovega sulfida (H₂S). Za žveplanje vina uporabljajo trakove (žveplenice), plinasti SO₂, 5–6 % vodna raztopina žveplova(IV) kisline (H₂SO₃) (žveplasta kislina) in kalijev bisulfit (K₂S₂O₅), iz katerega se v kislih raztopinah (vino, grozdni sok) sprosti SO₂ (Boulton, Singleton, Bisson in Kunkee, 1998).

Mošti in vina imajo običajno pH od 3 do 4. Prevladujoča oblika raztopljenega SO₂ v moštih in vinih je hidrogensulfatni(IV) ion oziroma bisulfitni ion (HSO₃⁻), ki je glavna oblika žvepla pri pH vrednostih od 1,86 do 7,18. Zelo majhen delež žvepla v vinih je v molekularni obliki (SO₂), in sicer od 6 % pri pH vrednosti 3,0 do 0,6 % pri pH vrednosti 4,0. Ta oblika žvepla prevladuje pri pH < 1,86, medtem ko je glavna oblika pri pH vrednostih > 7,18 sulfatni(IV) ion (SO₃²⁻). V mošt ali vino dodan SO₂ disociira v tri oblike po reakcijah:
Določena količina SO$_2$, ki ga dodamo v vino, se veže na spojine vina, npr. na acetaldehid, sladkorje, piruvat in druge porabnike žvepla. Imenujemo ga vezani SO$_2$. Prosti SO$_2$ je definiran kot nevezana oblika SO$_2$ v vinu in vključuje raztopljen SO$_2$ ter nevezana HSO$_3^-$ in SO$_3^{2-}$. V kakšnem deležu se posamezne oblike SO$_2$ pojavljajo v vinu, je odvisno od pH-vrednosti. Za vinarje je pomembna koncentracija prostega SO$_2$, saj lahko le ta oblika žvepla prepreči neželeno oksidacijo in zavira mikrobno rast. Koncentracija prostega SO$_2$, ki zagotavlja stabilnost vina, je 0,825 mg/l. Koliko molekularnega SO$_2$ moramo dodati v vino, da zagotovimo to koncentracijo prostega SO$_2$, je odvisno od pH-vrednosti vina (npr. pri pH vina 3,4 moramo dodati 32 mg/l SO$_2$, pri pH 4 pa 125 mg/l SO$_2$). Več podatkov o potrebnih dodatkih SO$_2$ glede na pH-vrednost vina najdete v objavi avtorjev Košuta in Jug (2010). Skupni SO$_2$ je vsota vezanega in prostega SO$_2$.

10.2 Izvedba vaje

Reagenti in pribor

- KIO$_3$, KI, H$_2$SO$_4$ (96 %), škrob, Na$_2$S$_2$O$_3$ · 5H$_2$O, metanol, propanal (C$_3$H$_6$O; oznaka na steklenici - propionaldehid), 1 M raztopina NaOH;
- grelno gnezdo, destilacijska bučka (100 ml), hladilnik, 25 ml bireta, 50 ml bireta, erlenmajerica (250 ml), 2 ml in 10 ml polnilna pipeta, 100 in 1000 ml merilna bučka, merilni valj, 500 ml čaša, parafilm, pH-testni lističi, avtomatska pipeta.

Postopek

Vsebnost skupnega in prostega SO$_2$ v vinu bomo določili po Rebeleinu. Vzorec vina destiliramo in v destilatu določimo koncentracijo skupnega SO$_2$ s titracijo z raztopino jodovice in natrijevega tiosulfata. Gre za referenčno metodo, s katero odpravimo številne moteče dejavnike, ki vplivajo na rezultat, kadar uporabimo metodo po Ripperju. Postopek določitve je povzet po navodilih Košmerl in Kač (2010).
Priprava raztopin

− Raztopina kalijevega jodata: natehtamo 0,1115 g KIO₃ in ga kvantitativno prenesemo v 1.000 ml merilno bučko, dodamo 50 ml 1 M raztopine NaOH in dopolnimo do oznake z vodo;
− raztopina H₂SO₄ (16 %): v 1.000 ml merilno bučko nalijemo demineralizirano vodo (do polovice), z merilnim valjem previdno dodamo 175 ml koncentrirane H₂SO₄, premešamo in dopolnimo z vodo do oznake;
− raztopina škrobovice (indikator): v 500 ml vrele vode dodamo 2 g škroba, ločeno v 500 ml demineralizirane vode raztopimo 20 g KI in dodamo 10 ml 1 M raztopine NaOH. Obe raztopini združimo in hranimo v hladilniku;
− raztopina natrijevega tiosulfata: natehtamo 1,5512 g Na₂S₂O₃ · 5H₂O in ga raztopimo v 10 ml 1 M raztopine NaOH in 500 ml vode. Ko se sol raztopi, merilno bučko (1000 ml) z vodo dopolnimo do oznake;
− raztopina propanala (10 %): odpipetiramo 10 ml propanala v 100 ml merilno bučko in jo z vodo dopolnimo do oznake.

Določitev prostega SO₂

Bireto napolnite z raztopino KIO₃. V erlenmajerico odpipetirajte 10 ml vzorca vina, previdno dodajte 10 ml 16 % raztopine H₂SO₄ in 10 ml raztopine škrobovice. Premešajte in titrirajte z raztopino KIO₃ do preskoka barve raztopine v rahlo modro. Barva mora biti obstojna vsaj 20–30 sekund. Med titracijo poteče redoks reakcija po enačbi:

\[
8\Gamma^- + IO_3^- + 6H^+ \rightarrow 3I_3^- + 3H_2O
\]
\[
I_3^- + SO_2 + H_2O \rightarrow SO_3^- + 3\Gamma^- + 2H^+
\]

Med jodidnim ionom (\(\Gamma^-\)) in jodatom (IO₃⁻) nastane trijodidni ion (I₃⁻). Dokler je v vzorcu prisoten SO₂, ta reagira z I₃⁻. V končni točki titracije, ko v vzorcu ni več SO₂, se v raztopini pojavi prosti jod, ki se veže v vijačnico škroba. Kompleks, ki pri tem nastane, je modre barve.

Na bireti odčitajte porabljen volumen raztopine KIO₃ in ga pomnožite z 10. Rezultat (\(Y_t\)) je masna koncentracija prostega SO₂ (mg SO₂/l vina) in reducentov (predvsem askorbinske kisline in reducirajočih sladkorjev).
Določitev prostega SO₂ s korekcijo na askorbinsko kisline

V erlenmajerico odpipetirajte 10 ml vzorca vina, dodajte 1 ml 10 % raztopine propanala in premešajte. Vrat erlenmajerice pokrijte s parafilmom in počakajte natančno 5 minut. Poteče reakcija med prostim SO₂ in propanalom. Po 5 minutah dodajte 10 ml 16 % raztopine H₂SO₄ in 10 ml raztopine škrobovice. Premešajte in titrirajte z raztopino KIO₃ do preskoka barve raztopine v rahlo modro. Na bireti odčitate porabljen volumen raztopine KIO₃ in ga pomnožite z 10. Rezultat (Y₂) je masna koncentracija askorbinske kisline (vitamina C), izražena kot prosti SO₂ (mg/l). Dejansko koncentracijo prostega SO₂ izračunajte po enačbi:

\[Y_{\text{prosti SO}_2} = Y_1 - Y_2 \]

Določitev skupnega SO₂

Najprej izvedite destilacijo z 10 ml demineralizirane vode (3–4 minute), da ogrejete destilacijski sistem. V erlenmajerico (predložka) odmerite iz birete 50 ml raztopine KIO₃ in erlenmajerico nastavite na konec destilacijske cevi tako, da je konica cevi potopljena v raztopino. V 100 ml destilacijsko bučko odpipetirajte 2 ml metanola, 10 ml vzorca vina in 10 ml 16 % raztopine H₂SO₄. Premešajte in bučko pritrdite na destilacijski sistem. Bučka mora biti v ogretem grelnem gnezdu. Destilirajte točno 3 minute. Ko uvajamo SO₂ v raztopino KIO₃, deluje SO₂ kot redukcijsko sredstvo in reducira jodat do joda po reakciji:

\[2\text{KIO}_3 + 5\text{SO}_2 + 4\text{H}_2\text{O} \rightarrow \text{K}_2\text{SO}_4 + \text{I}_2 + 4\text{H}_2\text{SO}_4 \]

Po končani destilaciji z vodo sperite konico cevi, ki je bila potopljena v raztopino KIO₃. Snemite destilacijsko bučko in konico destilacijske cevi ponovno sperite. Raztopino ohladite (tekoča hladna voda), dodajte 10 ml raztopine škrobovice in 10 ml 16 % raztopine H₂SO₄. Ker je v raztopini prisoten prosti (elementarni) jod, se le-ta ob dodatku škrobovice obarva temno modro oziroma črno. Bireto (25 ml) napolnite s standardizirano raztopino Na₂S₂O₃ in titrirajte do preskoka iz črno oziroma temno modro obarvane raztopine v brezbarvno ali rahlo modrikasto. Med titracijo poteče reakcija:

\[\text{I}_2 + 2\text{Na}_2\text{S}_2\text{O}_3 \rightarrow 2\text{NaI} + \text{Na}_2\text{S}_4\text{O}_6 \]

Poraba raztopine Na₂S₂O₃, ki jo odčitate na bireti, pomeni masno koncentracijo skupnega SO₂ v vinu (mg SO₂/l vina).
Koncentracijo vezanega SO\(_2\) izračunajte po enačbi: \(\Upsilon\) (vezani) = \(\Upsilon\) (skupni) – \(\Upsilon\) (prosti).

Titracija slepega vzorca

Za kontrolo koncentracije reagentov naredite tudi titracijo slepega vzorca. V erlenmajerico odmerite iz birete 50 ml raztopine KI\(_3\), dodajte 10 ml raztopine škrobovice in 10 ml 16 \% raztopine H\(_2\)SO\(_4\). Premešajte in titrirajte z raztopino Na\(_2\)S\(_2\)O\(_3\) do razbarvanja. Maksimalno dovoljeno odstopanje pri titraciji slepega vzorca je ± 2 mg SO\(_2\)l/l.

Rezultat

Uporabljeni viri

11 Kvalitativni testi za dokaz prisotnosti naravnih in umetnih barvil v živilih

Osnovni pojmi: naravna barvila, sintetična barvila, aditivi, kvalitativni testi

Namen vaje: S kvalitativni testi v vzorcih živil dokažemo prisotnost/odsotnost naravnih barvil (karamela, klorofil, kurkuma in anato) in sintetičnih barvil. Kisla sintetična barvila dokazujemo z volneno nitko, na kateri v kislem mediju nastane pozitivni naboj, ki deluje kot gonilna sila za difuzijo kislega barvila v vlakno. Privlačna sila nastane zaradi sulfonskih (HSO₃⁻) ali karboksilnih (CH₃COO⁻) funkcionalnih skupin v molekuli barvila.

11.1 Teoretične osnove

Barvila

Barvila za živila so snovi sintetičnega ali naravnega izvora, ki obnovijo naravno barvo živila ali ga obarvajo. V živilih se uporabljajo predvsem zaradi lepšega in privlačnejšega videza, nekatera naravna barvila delujejo tudi kot antioksidanti. Večinoma so topna v vodi, posamezna se bolje topijo v maščobah. Naravna barvila so klorofil, karotenoidi (npr. anato, kapsatin, lutein, kantaksantin), riboflavin, žafran, kurkuma, betanin, karamela, antocianini in druga. Pridobivamo jih iz rastlin (rdeče pese, rdeče paprike, korenja, šipka, paradižnika, drugih vrst sadja in zelenjave), gliv in živali. V proizvodnji ali predelavi živil
je uporaba naravnih barvil v porastu, ker pa so v primerjavi s sintetičnimi barvili manj obstojna, se lahko med tehnološkimi postopki razgradijo (FSSAI, 2015).

Prisotnost kisljih barvil v živilih ugotavljamo z vlakni. Kisla barvila imajo v strukturi molekule eno ali več sulfonskih (HSO\textsubscript{3}−) ali karboksilnih (CH\textsubscript{3}COO−) funkcionalnih skupin. Vlakna obarvajo iz kislih raztopin. V kisljih raztopinah na vlaknu nastane pozitivni naboj, ki deluje kot goriška sila za difuzijo barvila v vlakno. Na ta način se lahko barvajo vlakna, na katerih v prisotnosti kisline nastane pozitivni naboj (volna, svila, najlon).

11.2 Izvedba vaje

Reagenti in pribor

- Etanol, eter (dietil eter), petroleter, aceton, 5 % raztopina NaNO\textsubscript{2}, koncentrirana HCl, 1 % raztopina resorcinola (sveže pripravljena), 10 % raztopina KOH v metanolu, raztopina NH\textsubscript{3}, raztopina H\textsubscript{3}BO\textsubscript{3}, raztopina alkohola in etra (10 ml 96 % etanola in 30 ml etra), 40 % raztopina SnCl\textsubscript{2}, 0,1 M raztopina NaOH, 2 % raztopina NH\textsubscript{3} v 70 % etanolu, razredčena raztopina CH\textsubscript{3}COOH, 2 % raztopina NaOH;
- elektronska tehtnica, kuhalna plošča, centrifuga, filtrirni papir, centrifugirke, epruvete, 1 in 5 ml pipeta, izparilnice, čaše, vodna kopel, bela volnena nit, Soxhletov aparat, pH testni lističi, kuhalna plošča, terilnica in pestilo, centrifuga, merilni valj.
Postopek

a) Testi za prisotnost naravnih barvil

Karamela

Klorofil

Vzorec ekstrahirajte z etrom in k ekstraktu dodajte 10 % raztopino KOH v metanolu. Barva porjavi. Če se hitro spremeni nazaj v zeleno, ste potrdili prisotnost klorofila (FSSAI, 2015).

Kurkuma

Anato

Raztopljeno maščobo (maslo, margarina) ali olje stresajte z 2 % raztopino NaOH. Filtrirni papir navlažite in ga prelijte z ekstraktom. Filtrirni papir se bo obarval v barvo slame, ki se ohrani tudi po nežnem spiranju z vodo. Papir posušite, dodajte kapljico 40 % raztopine SnCl₂ in ga ponovno posušite. Če se pojavi vijolična barva, ste potrdili prisotnost anata (FSSAI, 2015).
Rezultat

Pripravi preglednico testiranih živil in pri posameznem živilu označi prisotnost/odsotnost posameznega naravnega barvila.

b) Test za prisotnost sintetičnih barvil v rumenjaku

Rumenjak ločite od beljaka in ga dobro homogenizirajte. Dodajte 15 ml raztopine etanola in etra, dobro premešajte in filtrirajte. S filtracijo ločite kosmičaste ostanke od rumene raztopine. V epruveto odpipetirajte 5 ml bistre raztopine, dodajte 1 ml 5 % raztopine NaNO₂ in nekaj kapljic koncentrirane HCl ter močno stresite. Pri reakciji med NaNO₂ in HCl nastane dušikova kislina, ki razbarva naravna barvila rumenjaka, na umetna barvila ne vpliva.

Rezultat

V jajčnem rumenjaku so (niso) prisotna umetna barvila.

c) Test za prisotnost prepovedanih barvil v oljih

V centrifugirko odmerite 5 ml vzorca in dodajte 5 ml koncentrirane HCl. Nežno nekaj časa stresajte in nato pustite stati 5 minut. Če je prisotno nedovoljeno barvilo, bo iz vzorca olja prešlo v kislino (v zgornjo plast).

Rezultat

V vzorcih olj je/ni prisotno prepovedano barvilo.

d) Test za prisotnost sintetičnih barvil

Za identifikacijo sintetičnih barvil v živilih je potrebna ekstrakcija barvila iz pripravljene raztopine živila. Če je v živilu prisotnih več barvil, jih lahko ločimo in identificiramo s papirno kromatografijo. Postopki, ki sledijo, so povzeti po opisu v literaturi (FSSAI, 2015).
Kvalitativni testi za dokaz prisotnosti naravnih in umetnih barvil v živilih

67

Priprava bele volnene niti

Volneno nit za pletenje ekstrahiramo s petrolometrom v Soxhletovem aparatu 2–3 ure, da odstranimo maščobo. Nato nit zavremo v zelo razredčeni raztopini NaOH in nato tudi v vodi, da odstranimo bazo.

Priprava vzorcev

Brezalkoholne pijače (npr. gazirane pijače): Ker je večina pijač v tej kategoriji kislih, jih lahko običajno neposredno tretirate z volneno nitjo. Če je pH vrednost nevtralna ali v bazičnem območju, vzorec nakisajte z ocetno kislinjo.

Alkoholne pijače (npr. vino): Alkoholne pijače zavrite, da odstranite alkohol. Če je potrebno, vzorec nakisajte.

Reakcija

V čaše s približno 15 ml pripravljenih nakisanih raztopin vzorcev dodajte 5 cm volneno nit in vzorce zavrite. Pustite tako dolgo, da se nit obarva. Volneno nit vzamete iz raztopine in jo sperite s tekočo vodo. Nit nato prenesite v čašo z raztopino razredčene NH$_3$ in sprejte. Če se nit razbarva, ste dokazali prisotnost kislega sintetičnega barvila. Barvilo, ki je bilo prisotno v živilu, ostane v alkani raztopini.

Če bi poskus nadaljevali z identifikacijo barvila s papirno kromatografijo, bi nit odstranili iz raztopine, raztopino nakisali, vanjo potopili novo volneno nit in zavreli, dokler se barvila ne bi vezala na nit. Barvila bi nato ekstrahirali z malim volumnom razredčene raztopine NH$_3$ in filtrirali. Nato bi barvilo skoncentrirali tako, da bi raztopino postavili na vodno kopel, segreli do vrenja in pustili vreti tako dolgo, da bi se volumen raztopine zmanjšal. Koncentrat barvila bi nato nanesli na kromatografski papir.
Volneno nit lahko obarvajo tudi naravna barvila, ki so prisotna v živilu, vendar se naravna barvila običajno z niti v alkalni raztopini NH₃ ne odstranijo. Bazična barvila ekstrahiramo tako, da živilo pripravimo v bazični raztopini NH₃, zavremo z volneno nitjo in barvilo z niti odstranimo v razredčeni kislini. Če test pokaže prisotnost bazičnega barvila, kaže na prisotnost prepovedanega barvila (FSSAI, 2015).

Rezultat

Pripravi preglednico testiranih živil in pri posameznem živilu označi prisotnost/odsotnost sintetičnega barvila.

Uporabljeni viri

Priloga: Laboratorijski dnevnik
POROČILO LABORATORIJSKIH VAJ

Številka vaje: ______________________________________

Ime in Priimek: ______________________________________

Študijski program: ____________________________________

NASLOV VAJE: __

1. Namenska vaje: (opisite v nekaj stavkih)

__
__
__
__
__
__

DATUM: ____________________
2. Kratak opis dela: (na kratko opišite postopke)

__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
3. Meritve (zapišite rezultate meritev npr. volumne standardne raztopine, porabljene za titracijo vzorca, izmerjene koncentracije …)
Izračuni (zapišite izračune, ki ste jih naredili pri pripravi raztopin za umiritvene krivulje, pri preračunih izmerjenih koncentracij v mg/kg ali mg/100 g vzorca …)
Rezultati in diskusija (rezultate prikažite v preglednici, grafu ali besedilu. Opišite, ovrednotite dobljene rezultate in jih komentirajte skladno z navodili vaje).
KEMIJSKE ANALIZNE METODE V KMETIJSTVU IN TOKSIČNE SNOVI V EKOSISTEMIH:

NAVODILA ZA LABORATORIJSKE VAJE

JANJA KRISTL
Univerza v Mariboru, Fakulteta za kmetijstvo in biosistemske vede, Maribor, Slovenija.
E-pošta: janja.kristl@um.si

Povzetek Navodila za vaje dopolnjujejo nekatere vsebinske sklope predavanj pri predmetih Kemijske analitične metode v kmetijstvu in Toksične snovi v ekosistemih. Študentu pomagajo razumeti posamezne pojme (ekstrakcija, atomska absorpcijska spektrometrija, molekulska absorpcijska spektrometrija, tekočinska kromatografija, kislinski razklop) in laboratorijske postopke. V gradivu so opisani postopki priprave vzorcev in kvantitativne določitve natrijevega klorida, proteinov, skupnih fenolov, sladkorjev, oksalatov, vodikovega cianida v vzorcih živil in žveplovega dioksida v vinu. Vključena je tudi kvalitativna določitev nitrata in nitrita v ekstraktih živil ter kvalitativni testi za ugotavljanje prisotnosti naravnih in sintetičnih barvil. Vsebina zajema tudi določitev rastlinam dostopnega bakra ter vodotopne in biodostopne frakcije svinca v talnih vzorcih.

Ključne besede:
natrijev klorid, proteini, oksalati, vodikov cianid, naravna in sintetična barvila, fenoli, žveplov dioksid, svincec, baker, nitrat

DOI https://doi.org/10.18690/um.fkbv.2.2022