TERAPEVTSKA HIPOTERMIJA IN KONTROLIRANA NORMOTERMIJA

(Diplomsko delo)

Maribor, 2016 Janja Mulec
Somentor: Andrej Markota dr. med.
KAZALO

POVZETEK .. VII

ABSTRACT .. VIII

UVOD .. 1

2 NAMEN, CILJI DELA .. 3

 2.1 NAMEN .. 3

 2.2 CILJI DIPLOMSKEGA DELA ... 3

3 RAZISKOVALNO VPRAŠANJE .. 4

4 METODOLOGIJA .. 5

 4.1 RAZISKOVALNE METODE .. 5

 4.2 UPORABLJENI VIRI .. 5

5 TERAPEVTSKA HIPOTERMIZA ... 7

 5.1 VRSTA HIPOTERMIZE ... 7

 5.1.1 INDUKCIJA IN FAZE HIPOTERMIZE .. 7

 5.2 CILJNA TEMPERATURA .. 10

 5.2.1 Vzdrževanje ciljne temperature ... 10

 5.2.2 Postopki segrevanja ... 11

 5.2.3 Mesta merjenja telesne temperature ... 13

6 ZGODOVINA HIPOTERMIZE .. 16

7 DEFINICIJA KONTROLIRANE NORMOTERMIZE ... 18

 7.1 DOSEGANJE kontrolirane NORMOTERMIZE ... 18

 7.2 STRANSKI UČINKI TERAPEVTSKE HIPOTERMIZE ... 20

 7.2.1 Aritmije, hemodinamične spremembe in kardiovaskularni učinki 21

 7.2.2 Koronarna perfuzija in ishemija .. 23

 7.2.3 Očistek zdravil .. 24

 7.2.4 Elektrolitske motnje ... 24

 7.2.5 Hiperglikemija ... 25
7.2.6 Drugi metabolni učinki in nadzor plinov v krvi .. 26
7.2.7 Koagulacijski parametri .. 26
7.2.8 Okužbe .. 26
7.2.9 Drgetanje .. 27
7.2.10 Ostali stranski učinki .. 27
8 STANJA PRI KATERIH SE IZVAJA TERAPEVTSKA HIPOTERMIIA KONTROLIRANA NORMOTERMIIA 28
 8.1 ZASTOJ SRCA .. 28
 8.2 POŠKODBA MOŽGANOV IN HRBTENJAČE .. 30
 8.3 ISHEMIČNA MOŽGANSKA KAP ... 30
 8.4 NEONATALNA ENCEFALOPATIJA .. 31
9 Pripomočki, ki se uporabljajo za sistemsko hlajenje telesa .. 33
 9.1 HLAJENJE Z MRZLIMI OBOLOGAMI ... 35
 9.2 HLAJENJE Z OBOLOGAMI NAPOLNJENIMI S HLADNO VODO 35
 9.3 HLAJENJE Z MRZLIMI INTRAVENSKIMI INFUZIJSKIMI TEKOČINAMI 38
 9.4 HLAJENJE z ezofagealnim izmenjevalcem toplote .. 39
10 VLOGA MEDICINSKE SESTRE PRI IZVAJANJU SISTEMSKEGA HLAJENJA TELESÂA 42
 10.1 IZOBRAŽEVANJE Zaposlenih v zdravstveni negi s področja normotermije in hipotermitje .. 43
 10.2 ZDRAVSTVENO VZGOJNO DELO PRI BOLNIKU IN SOJCIH PRI INDUCIRANI HIPOTERMIII 44
11 RAZPRAVA ... 45
12 SKLEP ... 48
LITERATURA .. 49

KAZALO SLIK

Slika 1: Hladilna odeja izumitelja dr. Temple Fay ... 16
Slika 2: Terapevtska hipotermija pri novorojenčku ... 32
Zahvala

Posebna zahvala gre mojima staršema, sestri in Marjetki za pomoč ter spodbudne besede.

Prav tako bi se rada zahvalila partnerju in sinu za potrpljenje in podporo.

Hvala.
POVZETEK

Terapevtska hipotermija pomeni, da namerno in s posebnimi postopki ter pripomočki znižamo temperaturo jedra telesa nižje kot je normalno. Človeška normalna temperatura telesa je okoli $36.5^\circ C$, ko pa bolnike zdravimo s terapevtsko hipotermijo telesno temperaturo znižamo na $32^\circ C$ do $34^\circ C$. V diplomskem delu smo predstavili postopke ohlajanja bolnika, vzdrževanje ciljne temperature, mesta merjenja telesne temperature, stranske učinke terapevtske hipotermije, stanja pri katerih se izvaja terapevtska hipotermija, pripomočke kateri se uporabljajo za sistemsko ohlajanje bolnikov. S pregledom domače in tuje literature ter elektronskih virov smo odgovorili na zastavljena raziskovalna vprašanja in ugotovili pozitivne učinke zdravljenja s terapevtsko hipotermijo. Opisali smo tudi vlogo medicinske sestre pri izvajanju terapevtske hipotermije in vzdrževanju kontrolirane normotermije ter našteli najpogostejše metode in načine doseganja terapevtske hipotermije in kontrolirane normotermije.

Ključne besede: terapevtska hipotermija, uravnavanje temperature, kontrolirana normotermija, nevrološke poškodbe, srčni zastoj, srčni infarkt, medicinska sestra, okrevanje, medicinska naprava.
ABSTRACT

Therapeutic hypothermia is a deliberate and specific treatment with the aim of reduction of core body temperature lower than normal whit specific products and devices. Normal human body temperature is about 36.5°C. When patients are treated with therapeutic hypothermia, body temperature is lowered to between 32°C and 34°C. In the thesis we present procedures for cooling a patient, procedures for maintaining the target body temperature, side effects of therapeutic hypothermia, the indications for us of therapeutic hypothermia and the devices which are used for cooling. We performed a review of Slovenian and international literature in order to answer the research questions. We outlined the beneficial effects of the treatment with therapeutic hypothermia, described the role of nurses in the implementation of therapeutic hypothermia and maintenance of normothermia and listed the most common methods and means of achieving hypothermia and normothermia.

Keywords: therapeutic hypothermia, body temperature control, controlled normothermia, neurological injury, cardiac arrest, myocardial infarction, nurse, rehabilitation, medical device.
UVOD

Terapevtska (inducirana) hipotermija, pomeni da namerno znižamo bolnikovo temperaturo sredice telesa nižje kot je normalno. To pomeni, da bolnika ohladimo na 32°C-34°C (Polderman, 2008).

Terapevtsko hipotermijo uporabljamo za preprečevanje in/ali ublažitev nevroloških poškodb predvsem pri bolnikih, ki ostanejo nezavestni po uspešnem oživljanju, za preprečevanje hipoksične-ishemične encefalopatije pri novorojenčkih, pri travmatski poškodbi možganov in pri nekaterih drugih boleznih. (Polderman, 2004).

Monsieurs, et al. (2015) opredeljujejo v novejših smernicah Evropskega sveta za oživljanje (ERC) terapevtsko hipotermijo kot enakovredno kontrolirani normotermiji. Smernice so bile objavljene predvsem na osnovi raziskave Targeted Temperature Management (TTM) (Nielsen, 2013). Monsieurs s sodelavci (2015) navaja izsledke raziskave, kateri niso ugotovili statistično pomembnih razlik v 180-dnevnom preživetju med skupino bolnikov, ki so bili zdravljeni s terapevtsko hipotermijo (ciljna temperatura 33°C) in skupino bolnikov, ki so bili zdravljeni s kontrolirano normotermijo (ciljna temperatura 36°C).

Pod določenimi pogoji se hipotermija uporablja terapevtsko pri zdravljenju resne travmatične možganske poškodbe, možganske kapi, poškodbah hrbtnjače, srčnega infarkta, odpovedi jeter ter še nekaterih ostalih stanj. Cilj kontrolirane normotermije je, da vzdržujemo bolnikovo telesno temperaturo v območju 36°C do 37.5°C. Pri kontrolirani normotermiji ni opaziti toliko stranskih učinkov kot pri terapevtski hipotermiji (Polderman, & Ingeborg, 2009).

V praksi se velikokrat poslužujemo kontrolirane normotermije pri pacientih kateri so septični in njihova telesna temperatura naraste nad 38.5°C. Kontrolirano normotermijo vzdržujemo s pomočjo antipiretikov, ledenih oblog ter s pomočjo sistema, kjer skozi blazine avtomatizirano
kroži tekočina, temperatura tekočine pa je odvisna od ciljne temperature (Member of Mennen Medical Group, 2010).

Uporabljamo različne pripomočke in pristope za doseganje terapevtske hipotermije in vzdrževanje normotermije. Ti pripomočki so hlajenje z mrzlimi infuzijskimi tekočinami (na 4% ohlajene kristaloidne raztopine), ledene obloge, hlajenje z mrzlim zrakom, hlajenje s pomočjo blazin napolnjenih z ohlajeno vodo, hlajenje z ezoafgealnim izmenjevalcem toplote.
2 NAMEN, CILJI DELA

2.1 NAMEN

Namen diplomskega dela je predstaviti potek terapevtske hipotermije in načine doseganja normotermije, ter opisati načine merjenja telesne temperature in predstaviti vlogo medicinske sestre pri induciranju terapevtske hipotermije.

2.2 CILJI DIPLOMSKEGA DELA

Cilji diplomskega dela so:

- predstaviti kaj je terapevtska hipotermija, vrste hipotermije in ciljno temperaturo,
- opisati zgodovino terapevtske hipotermije,
- opisati pomoč, ki se uporabljajo za zniževanje telesne temperature,
- opisati vlogo medicinske sestre pri izvajanju terapevtske hipotermije in vzdrževanju normotermije.
3 RAZISKOVALNO VPRAŠANJE

V diplomskem delu smo si zastavili tri raziskovalna vprašanja na katera bomo odgovorili z analizo virov in aktualnih člankov.

1. Kakšni so pozitivni učinki zdravljenja s terapevsko hipotermijo?
2. Kakšna je vloga medicinske sestre pri izvajanju terapevtske hipotermije in vzdrževanju normotermije?
3. Kateri so najpogostejši načini za doseganje hipotermije in normotermije.
4 METODOLOGIJA

4.1 RAZISKOVALNE METODE

4.2 UPORABLJENI VIRI

5 TERAPEVTSKA HIPOTERMIJA

Kralj, & Šoronda (2016) navajata, da za uvedbo inducirane hipotermije morajo biti izpolnjeni pogoj, kot so:

- nezavestni osebe po oživljanju zaradi primarnega srčnega zastoja,
- uspešno vzpostavljena spontana cirkulacija,
- čas povrnitve spontane cirkulacije, ki je manjši od 60 minut,
- morebitne kontraindikacije kot so srčni zastoj, ki nastane zaradi poškodb, huda krvavitev, znana koagulopatija, nosečnost, terminalne bolezni ali opustitev zdravljenja iz drugih razlogov.

5.1 VRSTA HIPOTERMIJE

Terapevtska (inducirana) hipotermija, ki jo definiramo kot namerno znižanje bolnikove temperature sredice telesa na 32˚C do 35˚C, se vedno pogosteje uporablja kot metoda za ublaževanje raznovrstnih nevroloških poškodb (Polderman, 2008).

Termina kot sta terapevtska hipotermija in inducirana hipotermija se uporablja v večih pomenih in tudi izrazi kot so blaga/zmerna/globoka hipotermija v njihovi rabi opisuje različne razpone v ciljni temperaturi (Polderman, & Ingeborg, 2009).

5.1.1 INDUKCIJA IN FAZE HIPOTERMIJE

Ob poskusu terapevtskega vplivanja na telesno temperaturo, se sprožijo mehanizmi za vzdrževanje telesne temperature. V normalnih okoliščinah se zgodijo skozi povečanje simpatičnega tonusa ter vazokonstrikcijo žil v koži (Polderman, 2004).
V normalnih okoliščinah se vazokonstrikcija začne pri temperaturi sredice telesa okoli 36.5°C, zmanjšanje izgube toplote kot posledica kožne vazokonstrikcije je 25% (Sessler, Moayeri, Støen, Glosten, Hynson, & McGuire, 1990).

Poleg tega se z drgetanjem poveča nastanek toplote pri čemer je prag drgetanja 1°C pod pragom vazokonstrikcije (35.5°C) (Lopez, Sessler, Walter, Emerick, & Ozaki, 1994).

Drgetanje povezujejo s povečanim tveganjem za okužbe ter negativen izid zdravljenja, če se pojavi v postoperativni fazi, ko bo imel bolnik, kateri je postal hipotermičen ter drgeta, povečan metabolizem, povečano porabo kisika, pospešeno dihanje, višjo srčno frekvenco in se bo odzval stresnim odzivom. Raziskave so dokazale, da pri budnih bolnikih lahko ta vrsta kompenzacijeega odziva poveča porabo kisika za 40 % do 100 %. To je nezaželen učinek, še posebej pri bolnikih z nevrološko ali posthipoksično poškodbo možganov. Pravzaprav sta bila naključna perioperativna hipotermija in posledični stres povezana s povečanim tveganjem za srčne infarkte, pri starejših bolnikih s srčnimi boleznimi (Polderman, & Ingeborg, 2009).

Bolnika je mogoče odlagati z zunanjim hlajenjem, notranjem hlajenjem ali s kombinacijo vsega našteteega.

Pri prvi fazi indukcije je cilj spustiti temperaturo pod 34°C ter do ciljne temperature na najhitrejši način (Polderman, & Callaghan, 2006).

Na splošno ni znano kakšna je idealna hitrost ohišavanja, na podlagi izkušenj v praksi si želimo doseči ciljno temperaturo telesa v roku ene ure po sprejemu bolnika na oddelek. V nekaterih ustanovah imajo za cilj dve, štiri ali šest ur od sprejema. Pri živalskih modelih so ugotovili manjšo stopnjo okvare možganov, če je bilo ohišavanje po sočntem zastoju čim hitrejše, vendar klinične raziskave tega doslej niso potrdile (Karnatovskaia, 2014).

Pri tej fazi je sprejemljava majhna prekoračitev (1°C) pod pogojem, da temperatura ostane nad 30°C. V fazi ohranjanja telesne temperature je cilj strogo nadzorovanje temperature jedra telesa z minimalnimi nihanji ali brez njih (Polderman, & Callaghan, 2006).

Vendar pa ni jasnih dokazov, da bi bila odstopanja od ciljne temperature povezana s slabšimi rezultati zdravljenja, razen, če se temperatura telesa poviša nad 37.5°C, ki pa je povezana s slabšimi izidi zdravljenja. Odstopanja so lahko med 0.2 do 0.5°C. Zadnja faza je faza
segrevanja, ki pa mora biti počasna in nadzorovana. Postopno segrevanje od 0.2°C do 0.5°C v eni uri (Polderman, & Callaghan, 2006).

Za vsako izmed faz hipotermije so opisani značilni zapleti. Na splošno je tveganje za kratkotrajne stranske učinke kot so hiperglikemija, hipovolemija in motnje elektrolitov najpogostejše v fazi indukcije (Polderman, & Ingeborg, 2009).

Takrat je bolnik najbolj nestabilen z veliko verjetnostjo za hitra nihanja v koncentraciji krvnega sladkorja, krvnega pritiska, koncentraciji kisika in ogljikovega dioksida v krvi, in podobno. Zaradi hitrih sprememb so potrebne ustrezne prilagoditve pri infuzijah zdravil in nastavitev na ventilatorju. Tveganje za zaplete lahko verjetno najbolj znižamo s tem, da bolnika ohladimo v najkrajšem možnem času in s tem skrajšamo fazo indukcije ter čim prej dosežemo bolj stabilno fazo ohranjanje ciljne temperature. To lahko dosežemo z uporabo kombiniranja najrazličnejših metod hlajenja, na primer z uporabo infuzije hladnih tekočin ter površinskega hlajenja (Polderman, Rijnsburger, Peerdeaman, & Girbes, 2005).

5.2 CILJNA TEMPERATURA

Ciljna temperatura je, ko želimo vplivati na telesno temperaturo, doseči povečanje in/ali izgubo toplote sredice telesa (Polderman, & Ingeborg, 2009).

5.2.1 Vzdrževanje ciljne temperature

Izguba toplote se pojavlja skozi osnovne mehanizme: konvekcijo, kondukcijo, radiacijo ter izhlapevanje (nastanek znoja). V normalnih okoliščinah je kondukcija (direktni prenos toplote z ene površine na sosednjo) zanemarljiva, medtem ko konveksijska izguba toplote (prenos toplote s površine v zrak) znaša med 20-30% izgubljene toplote pri sobni temperaturi, kjer ni preipha. Ko želimo vplivati na telesno temperaturo želimo doseči povečanje konveksijske in/ali konduksijske izgube toplote. Stopnjo izgube toplote določajo temperaturna razlika,
konducijske lastnosti okolja ter sestava telesa. Na primer voda je veliko boljši prenašalec toplote kakor zrak, tako bo mokra koža prenašala toploto veliko lažje kakor suha koža. Stopnja izgube toplote je večja pri raztopinah, katere so na alkoholni bazi, ker je stopnja izhlapevanja višja (Polderman, & Ingeborg, 2009).

Učinkovitost mehanizmov telesa za nadzor telesne temperature se znižuje s starostjo, to se zgodi zaradi zmanjšane občutljivosti na manjše temperaturne spremembe, zaradi zmanjšane stopnje metabolizma, neučinkovitega vaskularnega odziva ter pogosto tudi nižjega indeksa telesne teže (De Vitte, & Sessler, 2002).

Tako je terapevtska hipotermije laže izvedljiva pri starejših kot pri mlajših bolnikih. Potrebni odmerki opiatov in pomirjeval, s katerimi učinkovito zaustavimo mehanizme segrevanja telesa, so po navadi precej večji pri mlajših bolnikih. Podobno je tudi za doseglo hipotermije pri bolnikih s prekomerno telesno težo, saj mora biti hlajena večja količina hladilne tekočine ter zaradi izolacijskih lastnosti maščobnih tkiv (Polderman, & Ingeborg, 2009).

Ko se temperatura sredice telesa spusti pod 33.5°C postane bolnik stabilnejši, zmanjša se tveganje za izgubo tekočin v tretji prostor, preneha ali zmanjša se drgetanje in ustavijo se glavne spremembe hemodinamičnih parametrov, katere je povzročila hipotermija. V tej fazi je smiselna preusmeritev pozornosti na preprečevanje srednjeročnih (nastanejo v nekaj dneh ali tednih) stranskih učinkov kot so okužbe ran, pljučnice in preležanine (Polderman, & Ingeborg, 2009).

5.2.2 Postopki segrevanja

Pri postopkih ponovnega segrevanja telesa dosežemo, da se hlajeno telo postopoma segreje do normalne telesne temperature. Poznamo pasivne ali aktivne postopke segrevanja. Pri pasivnem segrevanju odstranimo pripomočke, ki so nam zagotavljali terapevtsko hipotermijo in s tem telesu dovolimo samodejni porast telesne temperature. Boljši in varnejši način ponovnega segrevanja pa je aktivno segrevanje telesa, kjer lahko z napravo s katero smo telo hladili, telo
ponovno segrevamo (npr. z uporabo zunanjih grelnih teles, ki jih nastavimo na ogrevanje). Z nastavitvijo ciljne temperature preprečimo, da bi se telo segrevalo prehitro. Porast temperature sme biti od 0.25°C/uro oz. približno 1°C/4 ure do temperature sredice telesa na 36°C. Prehitro segrevanje telesa lahko povzroči nevrološke poškodbe in izniči morebiten pozitiven učinek terapevtske hipotermije, ter lahko posledično poslabša nevrološki izid (Bindra, & Gupta, 2016).

Nekatere zaplete lahko pričakujemo torej tudi v fazi segrevanja. Pričakujemo lahko ponovne elektrolitske motnje, ki jih povzročajo zamenjave iznotrjcielčnega v izven celični predel, spremembe v porabu vazoaktivnih zdravil in spremembe v nastavitvah na ventilatorju. To lahko v večini primerov preprečimo s počasnim in nadzorovanim ponovnim segrevanjem. Prav tako obstajajo številni poizkusi na živalih, kateri kažejo, da lahko hitro ponovno segrevanje po zdravljenju s terapevtsko hipotermijo povzroči nasproten učinek (Polderman, & Ingeborg, 2009).

Lavinio, et al. (2007) so ugotovili, da je bila cerebrovaskularna odzivnost merjena z Intensive care monitoringom (ICM+), aparatom kateri beleži možgansko aktivnost, med hitrim ponovnim segrevanjem po zdravljenju s hipotermijo ovirana. Ob tem so imeli bolniki z blago hipotermijo veliko resnejše motnje cerebrovaskularne odzivnosti, kar kaže na pomembnost ohranjanja kontrolirane normotermije po zdravljenju s hipotermijo.

Bissonnette, et al. (2000) so opazili, da se je pri bolnikih, ki so bili hitro ponovno segreti, razvila močna možganska hipertermija, celo kadar je bila temperatura sredice telesa, izmerjena na drugih mestih, normalna.
Torej kljub temu, da ni bila izvedena nobena raziskava za določanje optimalne stopnje ponovnega segrevanja po zdravljenju s hipotermijo pri bolnikih s srčnim zastojem, lahko na podlagi napisanega zaključimo, da bo počasno ponovno segrevanje lahko ohranilo nevrozaščitne učinke hipotermije (Polderman, & Ingeborg, 2009).

5.2.3 Mesta merjenja telesne temperature

Vsa druga mesta merjenj telesne temperature bi morali primerjati s tem zlatim standardom. Večina pripomočkov za hlajenje je na voljo z nadzornimi sistemmi povratnih informacij, ki ves čas merijo bolnikovo temperaturo ter ji prilagajajo temperaturo hladilnega elementa (katetri, vložki ali odeje). Pri tem bi morali upoštevati, da velika večina pripomočkov in sond, ki se trenutno uporabljajo pri nadzoru temperature sredice telesa pri hudo bolnih bolnikih, ni bila zasnovana za zaznavanje hitrih temperaturnih sprememb, marveč za prikaz manjših temperaturnih sprememb skozi daljši čas tako natančno, kot je le mogoče. Temperaturne sonde potrebujejo nekaj časa, da se uravnovesijo, nadzorne naprave, s katerimi so povezane, pa imajo po navadi nizko frekvenco odvzemana temperaturnih vzorcev, zaradi česar so zamiki pri odčitovanju še večji. Veliko novejših pripomočkov za hlajenje imajo relativno visoke stopnje hlajenja, še posebno kadar jih kombiniramo z infuzijami hladnih tekočin, takrat lahko dosežemo stopnjo ohladitve 4°C/uro ali celo več. Tako hitro hlajenje neizogibno vodi k časovnemu zamiku med očitanjem temperature in izmerjeno temperaturo sredice telesa, razen kadar se meri direktno temperatura v krvi. To se nanaša na vsa najpogostejša mesta nadzora temperature (mehur, rektum, požiralnik in bobnič), čeprav se časovni zamiki precej

Markota, Palfy, Stožer, & Sinkovič (2015) so izvedli raziskavo kjer se je pri bolnikih, ki so doživeli srčni zastoj ter bili v komi, primerjala telesna temperatura izmerjena v požiralniku in mehurju. Raziskava je potekala od januarja do aprila 2012 pri osmih bolnikih. Bolnike se je hladilo s hladno fiziološko raztopino dokler ni bila dosežena telesna temperatura 33,9°C. Beležene telesne temperature se je izvajalo vsakih pet minut, skupaj 95 minut (20 ponavljanj). Raziskava je pokazala, da spremembe telesne temperature v sečnem mehurju zaostajajo približno 30 minut za spremembami telesne temperature v požiralniku. Glede na rezultate omenjene raziskave je merjenje temperature v sečnem mehurju neustrezno, če pričakujemo hitre spremembe telesne temperature.

Na uravnovešanje stopnje med krvjo ter organom, kjer je bila temperatura izmerjena, vpliva mnogo faktorjev, vključno z vrsto organa, perfuzijo organa (na kar pa vpliva prisotnost šoka, hipotenzija ali hipovolemija – s počasnejšim uravnovešanjem pri znižani perfuziji – ter prej obstoječe bolezni, kot je ateroskleroza, kjer se pri hujši obliki bolezni spet pojavi nižja perfuzija) ter različni lokalni faktorji. Uporabljena metoda hlajenja (posebej površinska) lahko vpliva na odčitanje temperature. Invazivne metode hlajenja ohladijo kri direktno in bodo zato hitreje vplivale na odčitanje temperature. Ustrezno merjenje temperature lahko zapletejo tudi tehnične omejitve. Na primer mnogo temperaturnih sond v mehurju (Foley katetri s temperaturnimi senzorji), ki so zelo razširjeni, imajo lebdeč temperaturni senzor, kateri ni pritrjen v notranjosti katetra. Tako se senzor lahko premika po katetru, če se v katetru pojavi vlek, se lahko konica temperaturne sonde premakne nazaj v balon z raztopino, katera zapira mehur. Če je bil balon pravkar napolnjen z raztopino sobne temperature, lahko to precej vpliva na odčitanje temperature. Zaradi vseh našteti razlogov se bo med fazo indukcije izmerjena
temperatura ves čas razlikovala od dejanske temperature sredice telesa. To pomeni, da bodo pripomočki za hlajenje bolnika še naprej hladili celo takrat, ko je bila dosežena ciljna temperatura, saj je odčitavanje temperature na sondi, ki nadzoruje pripomočke za hlajenje, v zamiku glede na dejansko temperaturo sredice telesa. Pripomoček bo nadaljeval s hlajenjem dokler se ne bo temperaturni vnos približal zadnji ciljni temperaturi, do tega trenutka pa se bo lahko dejanska temperatura sredice telesa (kot je bila izmerjena v krvi) spustila precej niže od želenega obsega. Vsa od pogosto uporabljenih mest nadzora temperature imajo specifične prednosti ter slabosti (Polderman, & Ingeborg, 2009).
6 ZGODOVINA HIPOTERMIJE

Hipokrat, grški zdravnik, ki je živel v letih med 460 do 370 pred našim štetjem, je že svoje bolnike s hudimi poškodbami glave zdravil predvsem v zimskih časih z ledom ali s snegom, s katerim jih je obdal, da bi izboljšal zdravljenje. Seveda se ta tehnika razlikuje od tehnik sodobne medicine. Prvi dokumentirani zapisi o uporabi terapevtske hipotermije segajo v 18. stoletje, kjer so jo uporabljali za zdravljenje po oživljanju (Koran, 2008). V kliničnem preizkusu leta 1938, katerega je vodil Fay, je z globoko hipotermijo zdravil bolnike z rakavim oboljenjem z namenom, da bi jim zmanjšal telesno temperaturo s katere bi upočasnili napredovanje bolezni. V tem poizkusu so temperaturo jedra znižali na izredno nizko raven 27°C, ki se pa danes ne uporablja zaradi pomembnih stranskih učinkov. Tako nizkih temperatur danes ne uporabljamo več, bolnike ohlajamo s temperaturo od 32°C do 34°C. Te temperature niso zgolj varnejše za bolnika, vendar so tudi stroškovno učinkovitejše za indukcijo in vzdrževanje (American Society of Hypothermic Medicine, b.d.).

Karnatovskaia, Wartenberg, & Freeman (2014) navajajo, da je dr. Temple Fay izumitelj prvih oblik "hladilnih odej". To so bile posebno izolirane vzmetnice med posteljo in odejo z zadrgo katere so vsebovale gumijaste cevi po katerih je neprekinjeno krožila hladna tekočina.

Slika 1: Hladilna odeja izumitelja dr. Temple Fay

Vir: Karnatovskaia, Wartenberg, & Freeman (2014)
Drabek, & Quinland (2011) navajata, da uporaba terapevtske hipotermije v moderni zgodovini sega v leto 1950, kjer se je z blago hipotermijo doseženo s površinskim hlajenjem med anestezijo ščitilo možgane in srce. To je bilo podprto z raziskovalnim delom Bigelow, Lindsay, & Greenwood (1950) kjer so demonstrirali pozitivne učinke hipotermije pri raziskavi na živalih (psih).
7 DEFINICIJA KONTROLIRANE NORMOTERMije

Nadzorovano (kontrolirano) normotermijo ali terapevtsko normotermijo uporabljamo pri bolnikih s povišano telesno temperaturo z vzdrževanjem ciljne temperature na 36°C do 37.5°C s potencialno škodljivimi učinki kot so drgetanje, ki ga je mogoče nadzirati ali preprečiti (Polderman, & Ingeborg, 2009).

7.1 DOSEGANJE KONTROLIRANE NORMOTERMije

Kontrolirana normotermija predstavlja zelo povezano, vendar ločeno področje terapevtskega nadzora temperature. Indukcija in ohranjanje normotermije sta v mnogih pogledih manj težava kot terapevtska hipotermija, ker imata manjše število možnih potencialnih stranskeh učinkov. Stranski učinki, kot sta zmanjšano imunsko delovanje in motnje koagulacije se pri kontrolirani normotermiji ne pojavljajo. Vendar pa lahko preprečevanje povišane temperature prikrije klinično sliko vnetnega dogajanja, ki je povezano s povišano telesno temperaturo. Nasprotno pa so lahko stranski učinki kot pri terapevtski hipotermiji veliko bolj izraženi kot pri terapevtski hipotermiji. Razlog za to je, da so mehanizmi telesa za nadzor pri nižjih temperaturah oslabljeni, v normalnem razponu pa delujejo z maksimalno zmogljivostjo. Pri bolnikih s povišano temperaturo se ciljna hipotermična vrednost, ki nadzoruje temperaturo sredice telesa, začasno resetira na višjo vrednost ter vsi mehanizmi, ki so telesu na voljo za ohranjanje toplote in proizvodnjo toplote so maksimalno aktivirani, da bi doseglji to novo ciljno vrednost. Zato je lahko kljub manj stranskim učinkom ohranjanje normotermije veliko težje (predvsem zaradi večjega odziva z drgetanjem v primerjavi s hipotermičnim stanjem). To izpostavlja probleme, kateri se lahko pojavijo med ohranjanjem normotermije. To se nanaša predvsem na hlajenje zbufenih bolnikov, kjer je pogosto težje nadzorovati drgetanje, ker lahko visoki odmerki zdravil za pomiritev povzročijo težave z dihanjem. Hlajenje lahko povzroči velik stresni odziv, če se ne uporabi zdravljenje drgetanja ali če je zdravljenje neučinkovito. V kliničnem okolju je mogoče takšne odzive telesa omiliti z
raznimi zdravili proti drgetanju. Zaradi omenjenih razlogov bodo po vsej verjetnosti potrebni večji odmerki za nadzor drgetanja med indukcijo normotermije kot pri hipotermiji. To je lahko težavno predvsem pri zbujenih in neventiliranih bolnikih (Polderman, & Ingeborg, 2009).

Nielsen, et al. (2013) so na populaciji nezavestnih odraslih bolnikov po oživljanju pri 25% bolnikov v vsaki skupini (normotermija vs. hipotermija) uporabljali endovaskularni pripomoček za hlajenje. Niso ugotavljali razlik v preživetju med bolniki, pri katerih so uporabili endovaskularni pripomoček v primerjavi s tistimi bolniki, kjer so temperaturo uravnavali z zunanjimi metodami.

Poleg pripomočkov, kateri se uporabljajo za hlajenje lahko za zdravljenje hipotermije uporabimo raznolika antipiretična zdravila, kot je na primer acetaminofen. Vendar pa je učinkovitost teh antipiretikov omejena, še posebej pri bolnikih z nevrološko (centralno) povišano temperaturo (Polderman, & Ingeborg, 2009).
V raziskavi Dippel, et al. (2003), je pokazala povečan upad temperature med zdravljenjem z velikimi odmerki (4000-6000 mg/dan) acetaminofena in sicer okoli 0.3-0.4°C.

O podobnih rezultatih poročajo tudi ob uporabi velikih odmerkov aspirina (Bachert, Chuchalin, Eisebitt, Netayzhenko, & Voelker, 2005) in v majhnih raziskavah z metamizolom (Gozzoli, et al. 2004).

Ibuprofen je zelo verjetno neučinkovit pri zmanjševanju temperature sredice telesa. Kljub relativno majhnim učinkom je uporaba zdravil za znižanje temperature koristno pomočno zdravljenje, saj povzroča znižanje temperature brez aktiviranja mehanizmov proti nadzoru (Polderman, & Ingeborg, 2009).

Terapevtska hipotermija je še vedno ena izmed možnih načinov uravnavanja temperature pri nezavestnih bolnikih po uspešnem oživljanju (Monsieurs, et al. 2015). Poleg terapevtske hipotermije je možnost tudi kontrolirana normotermija. Priporočilo je bilo objavljeno na osnovi raziskave, ki jo je leta 2013 objavil Nielsen, et al. (2013), kjer so primerjali ciljne temperature bolnikov ohlajenih na 33°C in tistih, ki so bili ohlajeni na 36°C. Ugotovili so, da med njimi ni bilo bistvenih razlik glede preživetja ali boljšega nevrološkega izida. Prav tako niso ugotovili nobenih negativnih učinkov pri bolnikih, ki so bili ohlajeni na 33°C. Raziskave torej niso povsem dokazale, da je terapevtska hipotermija učinkovitejša. Pri bolnikih, ki so bili ohlajeni na temperaturo 36.5°C ni zabeleženih bistvenih razlik s primerjavo terapevtske hipotermije. Ta raziskava ni predložila dokazov, da ciljna telesna temperatura na 33°C izboljšuje izid zdravljenja nezavestnih bolnikov po srčnem zastoju v primerjavi s vzdrževanjem ciljne temperature telesa na 36°C.

7.2 STRANSKI UČINKI TERAPEVTŠKE HIPOTERMIJE

Tudi terapevtska hipotermija ima specifične stranske učinke, ki jih lahko opazimo med hlajenjem bolnika. Ti stranski učinki so aritmije, hemodinamične spremembe in
kardiovaskularni učinki, zmanjšana koronarna perfuzija in ishemija, elektrolitske motnje, hiperkalijemija, drugi metabolni učinki, koagulacijske motnje, infekcije, drgetanje ter ostali stranski učinki (Polderman, & Ingeborg, 2009).

7.2.1 Aritmije, hemodinamične spremembe in kardiovaskularni učinki

Med blago do zmerno hipotermijo (32°-34°C), se minutni volumen srca zmanjša za 25% do 40%, ponavadi zaradi zmanjšane srčne frekvence. Na splošno je zmanjšana stopnja metabolizma enako ali večje zmanjšanju delovanju srca. Nasičenost mešane venske krvi s kisikom se malenkost poveča ali pa ostane nespremenjena, kar nakazuje na nespremenjeno ali izboljšano stanje cirkulacije. Centralni venski tlak se lahko močno zmanjša zaradi obilnih diurez. Pri tem je zelo pomembno, da zaradi možnih hitrih sprememb neprekinjeno spremljamo hemodinamsko stanje. Pojavi se tudi povečana upornost arterij (sistemska vaskularna upornost) in rahel porast krvnega tlaka (za 10 mm Hg) zaradi vazokonstikcij perifernih arteriol, ki jih povzroči hipotermija. Tega učinka vazokonstrikcij ni ali pa je manj izražen pri cerebralnih arterijah, kjer se izboljša ali ohrani ravnovesje med cerebralnim krvnim tokom in cerebralnim metabolizmom (Erecinska, Thoresen, & Silver, 2003).

Vendar pa pri večini bolnikov, ki so doživeli srčni zastoj in mu je sledila reperfuzija, razvije sistemska odziv z vnetjem, ki je podobno sindromu sistemskega vnetnega odziva. V takšni situaciji pomaga povečanje sistemske vaskularne upornosti, ker poveča tudi koronarno prekrvavitve. Zmanjšanje srčne frekvence, ki ga povzroči hipotermija bo zmanjšalo potrebo srčne mišice po kisiku. Učinki hipotermije na krčljivost srčne mišice so predvsem zelo odvisni od srčne frekvence. Če se srčna frekenca zmanjša hkrati s temperaturo, se krčljivost srčne mišice običajno poveča, čeprav se lahko pojavi malo diastolične motnje (Polderman, & Ingeborg, 2009).

Lewis, Al-Khalidi, Townend, Coote, & Bonser, (2002) so ugotovili, da pa se ob umetnem povečanju srčne frekvence z uporabo kronotopičnih zdravil ali elektrostimulacije krčljivost
srčne mišice lahko tudi zmanjša. Ta pojav je bil prikazan v raziskavah na živalih ter tudi na bolnikih med operacijo srca.

Hipotermija povzroči tudi elektrokardiografske spremembe ter spremembe srčnega ritma. Ko pričnemo s hipotermičnim zdravljenjem in začne telesna temperatura padati, se v začetku pojavlja blaga sinusna tahikardija. To se deloma zgodi zaradi povečanega venskega povratka v srce, ki ga povzroči sprememba volumna krožčev krvi iz perifernega predela (posebej kože) v predel sredice telesa. Sinusna bradikardija se pojavlja, ko temperatura pada pod 35.5°C, pri tem pa se srčna frekvenca ob nižanju temperature še naprej znižuje. Pri temperaturi sredice telesa 32°C se srčna frekvenca običajno zniža na 40 – 45 utripov/min ali pa še bolj, čeprav je veliko intraindividualne raznolikosti in lahko srčna frekvenca ostane 60 ali celo več utripov/min (Polderman, 2008).

Zadostnost krvnega obtoka lahko preverjamo z merjenjem nasičenosti s kisikom centralne venske krvi, mešane venske krvi ali laktata. Pri zadnjem parametru moramo vedeti, da se količina laktata pogosto poveča med hipotermijo. Vendar te količine morajo ostati stabilne, ko je dosežena ciljna temperatura. Če se laktat in metabolna acidoza še naprej povečujeta, lahko to pomeni nezadostno cirkulacijo, kar pa zahteva nadaljnjo diagnostično oceno in morda tudi terapevtske posege kot je uporaba tekočin ali uporaba inotropnih zdravil. Tveganje za razvoj klinično hudi aritmij zaradi hipotermije je zelo nizko dokler temperatura bolnikove sredice telesa ostane nad 30°C (Polderman, & Ingeborg, 2009).

Raziskave na živalih so dokazale, da blaga dosežena hipotermija pomembno poveča verjetnost uspešne defibrilacije in dobrih izidov oživljanja. Poročila o različnih primerih opisujejo uspešno uporabo hipotermije pri zdravljenju aritmij pri dojenčkih, kar kaže, da
hibotermija zares lahko izboljša stabilnost membran ter zmanjša verjetnost aritmij (Polderman, & Ingeborg, 2009).

7.2.2 Koronarna perfuzija in ishemija

Kot smo že razložili, je perioperativna hipotermija povezana s povečanim tveganjem za kardiovaskularne zaplete. Deloma zaradi teh opažanj velja, da lahko hipotermija povzroči koronarno vazokonstrikcijo ter miokardno ishemijo. Pri zdravih ljudeh blaga hipotermija (35°C) resnično poveča koronarno perfuzijo. Vendar pa ni tako enostavno pri bolnikih z boleznijo koronarno arterije; hipotermija lahko povzroči vazokonstrikcijo v hudo aterosklerotičnih koronarnih arterijah. Kateri učinek se bo pojavil je odvisno od predhodnega zdravja bolnikovih koronarnih arterij in lokalnih faktorjev (Polderman, & Ingeborg, 2009).

Erlinge, et al. (2014) opisujejo raziskavo CHILL-MI, na področju uravnavanja temperature, ki so jih opravili pri bolnikih, ki niso utrpeli srčnega zastoja. Sodelovalo je 120 bolnikov z akutnim miokardnim infarktom. V raziskavi so 59 bolnikov oskrbeli na standarden način (brez uvedbe terapevtske hipotermije), 61 bolnikov pa so podhladili s pomočjo hitre infuzije hladne fiziološke raztopine (600 do 2000ml) ter endovaskularnimi hladilnimi katetri. Terapevtsko hipotermijo so začeli izvajati pred perkutano koronarno intervencijo (PCI), ki se je nadaljevala
še eno uro po ponovni vzpostavitvi koronarnega krvnega obtoka. Dokazali so, da je bilo nekroze miokarda manj pri bolnikih, ki so bili ob koronarni intervenciji podhlajeni.

7.2.3 Očistek zdravil

Znižana metabolična aktivnost vodi k znižani metabolični stopnji uporabljenih zdravil. Še posebno mišičnih relaksantov in anestetikov (Wendl, 2007).

V večini primerov so kot rezultat hipotermije tako povečane koncentracije zdravil ali povečanje učinka zdravil. Mehanizem za to je zmanjšana aktivnost številnih jetnih encimov med hipotermijo v kombinaciji z zmanjšano perfuzijo jeter ter zmanjšanim tvorjenjem žolča, kar pa vodi k povečanem izločanju nekaterih zdravil. Vplivajo lahko tudi spremembe v porazdelitvi volumna in tubularna disfunkcija, ki nastane zaradi hipotermije. Verjetno je, da bo temperatura na podoben način vplivala na metabolizem ostalih zdravil, glede na njihov mehanizem izločanja. Te mehanizme bi morali upoštevati pri zdravljenju bolnikov s hipotermijo. Posebno pozornost bi morali nameniti sedaciji ter analgeziji, predvsem pri uporabi benzodiazepinov in opiatov, še posebno morfija, ki se lahko kopčajo med hipotermijo in otežujejo nevrološko oceno po zdravljenju. Primerna sedacija je ključnega pomena za učinkovito hlajenje, vendar je pravilno odmerjanje med hipotermijo lahko oteženo (Polderman, & Ingeborg, 2009).

7.2.4 Elektrolitske motnje

Elektrolitske motnje se lahko razvijejo predvsem v indukcijski fazi hlajenja. Pri bolnikih so med hlajenjem pogoste nižje koncentracije elektrolitov, razlog za to je v povečanem ledvičnem izločanju v povezavi z zamenjavo v celici (Polderman, Peerdeman, & Girbes, 2001).

Takšne elektrolitske motnje lahko povečajo tveganje za aritmije ter imajo druge neugodne učinke na preživetje. Magnezij lahko igra še posebej pomembno vlogo pri zmanjšanju poškodb miokarda, možgan ter aritmijah (Polderman, & Ingeborg, 2009).
Nadomeščanje magnezija močno zmanjša možganske poškodbe pri živalih, klinične raziskave (Polderman, Van Zanten, & Girbes, 2003; Van den Bergh et al., 2005; Altman et al., 2002) so dokazale izboljšan nevrološki rezultat z magnezijevimi dopolnili pri hudi eklampsiji in subarhnioidni krvavitvi.

Hipomagnezemija je povezana tudi z neugodnim izidom zdravljenja pri bolnikih z nestabilno angino pektoris ali miokardnim infarktom. Slednje je še posebej pomembno, če bolnike zdravimo s terapevtsko hipotermijo po srčnem infarktu. Nekaj raziskav je povezalo hipomagnezemijo z višjo umrljivostjo na enotah za intenzivno terapijo. Vse to pomeni, da moramo magnezij ohranjati v mejah normale, pri bolnikih z nevrološkimi poškodbami na splošno ter posebej pri tistih, ki jih zdravimo s hipotermijo (Polderman, & Ingeborg, 2009).

Vrednosti kalija se lahko dvignejo v fazi ponovnega segrevanja, ko se sprosti kalij, ki je bil izločen v celico v fazi indukcije. To je eden od razlogov zakaj moramo ponovno segrevanje izvesti počasi in dati ledvicam čas, da izločijo odvečen kalij. Če je ponovno segrevanje počasno in delovanje ledvic ni zelo ovisno se hiperkalijemija ne bo razvila (Polderman, Peerdeman, & Girbes, 2001).

7.2.5 Hiperglikemija

7.2.6 Drugi metabolni učinki in nadzor plinov v krvi

7.2.7 Koagulacijski parametri

Standardni koagulacijski testi ne bodo pokazali nepravilnosti, razen če jih naredimo pri dejanski bolnikovi temperaturi sredice telesa. Isto velja tudi z analizo plinov v krvi, saj so vzorci običajno segreti na 37°C preden se opravijo testi. Kljub napakam v koagulaciji, ki jih hipotermija lahko povzroči, je tveganje za klinično pomembno krvavitev zaradi hipotermije pri bolnikih, ki še ne krvavijo aktivno, zelo nizko. Prav nobeden od večjih kliničnih poizkusov pri bolnikih s travmatičnimi možganskimi poškodbami, subarahnoidno krvavitvijo ter kapjo in postanoksično komo, ne poročajo o pomembnem povečanju tveganja krvavenja v povezavi s hipotermijo. Situacija je lahko drugačna pri bolnikih, ki že aktivno krvavijo in pri bolnikih s pomembnimi poškodbami ali politravmo. V takšnem primeru bi morali najprej vzpostaviti nadzor nad mesti krvavitve, šele nato začeti zdravljenje s hipotermijo. Hipotermija ne vpliva na delovanje trombocitov, dokler se temperatura ne spusti pod 35°C, na faktorje strjevanja vpliva le, ko se temperatura spusti pod 33°C (Polderman, & Ingeborg, 2009).

7.2.8 Okužbe

Inzulinska odpornost zaradi hipotermije in hiperglikemija še dodatno lahko povečata tveganja za okužbami. Nekatere od kliničnih raziskav, katere so uporabile inducirano hipotermijo za različne indikacije, poročajo o rahli, zmerni in v osamljenih primerih, hudo povečani pojavnosti pljučnice, ko so hipotermijo uporabljali dalj kot 24 ur. Večina raziskav, v katerih so
uporabljali hipotermijo 24 ur ali manj, ne poroča o povečanju ali pa le o nizkem povečanju stopnje okužb. Profilaksa z antibiotiki v selektivni obliki dekontaminacije prebavnega trakta lahko zmanjša *gram-negative* okužbe in morda zniža umrljivost (Schultz, de Jonge, & Kesecioglu, 2003).

7.2.9 Drgetanje

Drgetanje lahko omilimo z uporabo pomirjeval, opiatov, anestetikov ali mišičnih relaksantov. Pri večini bolnikov lahko drgetanje zelo omilimo z relativno malim odmerkom opiatov. Nekatere raziskave so torej poročale, da se lahko drgetanje zmanjša s segrevanjem bolnikovih stopal, dlani ali obraza in z zmanjšanjem potrebnih odmerkov zdravil proti drgetanju. Vendar pa so ostali poročali, da učinkov segrevanja dlani/obraza pri drgetanju ni bilo ali pa so bili zelo majhni. Če uporaba mišičnih relaksansov in opiatov ni zaželena, so alternativen proti drgetanju uporaba klonidina, neostigmina ter ketaneserina (Polderman, & Ingeborg, 2009).

7.2.10 Ostali stranski učinki

Hipotermija je povezana z oslabljeno črevesno aktivnostjo ter lahko poslabša težave s praznjenjem črevesja. Prav tako se lahko pojavi veliko sprememb pri laboratorijskih meritvah, poleg hiperglikemije ter elektrolitskih motenj so najpogostejše spremembe, kot so dvig encimov jeter in seruma amilaza, povišanje vrednosti laktata (povprečno 2,5 do 5 mmol/L, v nekaterih primerih lahko tudi višje). Laktat v območju 3 do 5 mmol/L je že pomembno povišan in je dovolj za diagnozo šok. (Polderman, 2004).
8 STANJA PRI KATERIH SE IZVAJA TERAPEVTSKA HIPOTERMIJA KONTROLIRANA NORMOTERMIJA

Uvedba inducirane terapevtske hipotermije se izvaja pri odraslih, ki ostanejo nezavestni po oživljanju zaradi primarnega srčnega zastoja, osebe katere so bile oživljanje po srčnem zastoju, pri osebah katerih je bila vzpostavljena spontana cirkulacija in pri osebah katerih je do povrnitve spontane cirkulacije preteklo manj kot 60 minut (Ploj, 2006).

8.1 ZASTOJ SRCA

Najpogostejši vzrok bolezni srca je slaba prekrvavitev srčne mišice, ki privede do zastoja srca (Marušič, Ravnikar, & Korošec, 2016).

Zdravljenje po vzpostavitvi spontanega krvnega obtoka vpliva na preživetje ter kasnejšo kvaliteto življenja. O zdravljenju po srčnem zastoju govorimo po vzpostavitvi spontane cirkulacije, katera traja več kot eno minuto. Glede na pojavnost posameznih zapletov ga je možno razdeliti v tri obdobja. Obdobje cirkolatorne nestabilnosti, prične se neposredno po vzpostavitvi spontanega krvnega obtoka, obdobje reakcije centralnega živčnega sistema na prestano hipoksijo, ki pa nastopi 4 do 6 ur po kardiopulmonalnem oživljanju in katerega najhujša manifestacija je možganski edem ter pozno obdobje, pri katerem opazujemo pojav odpovedi vseh ostalih organskih sistemov ter razvoj okužbe. Posamezni zapleti se pojavijo odvisno od vzroka za srčni zastoj, od katerega je delno odvisen tudi prvi ugotovljeni ritem ob srčnem zastoju ter čas od srčnega zastoja do pričetka oživljanja. Pri izjemno hitrem in učinkovitem ukrepanju, običajno po ventrikularni fibrilaciji (VF), so bolniki po vzpostavitvi spontanega krvnega obtoka ponovno hitro pri zavesti in pri teh so navedena obdobja minimalno izražena ali pa sploh ne pride do zapletov. Pri tistih bolnikih, ki se jim zavest ne povrne, pa so vedno izražena (Kamenik, 2007).
S starostjo se povečuje tveganje za srčni zastoj. Po 50. letu je ogroženost med spoloma enaka, medtem ko je večja ogroženost pred 50. letom za moškega. Posebej ogroženi so ljudje s povišanim krvnim tlakom, povišanimi maščobami v krvi, prekomerno telesno težo, telesno neaktivni, kadilci in diabetiki (Kardiološka ambulanta, 2016).

Monsieurs, et al. (2015) navaja ERC smernice, ki priporočajo, da zdravljenje srčnega zastopa z ventrikularno fibrilacijo (VF), pričnemo nemudoma z kardiopulmonalnim oživljanjem (KPO) s strani očividcev ter čim hitrejšo električno defibrilacijo.

Veliko nekardialnih srčnih zastojev povzroči utopitev (med katerimi je veliko otrok) ter zadušitev. Za uspešno oživljanje ter preživetje takšnih bolnikov so tako vpihi in stisi prsnega koša nujno potrebni. Klinična slika se zelo razlikuje od bolnika do bolnika ne glede na razlog srčnega zastopa. Od popolne neprizadetnosti in nevrološke intaktnosti bolnika, vse do znakov šoka z odpovedjo organov ter hudo okvaro CŽS do možganske smrti. Za zdravljenje bolnikov, ki spontano dihajo in so pri zavesti, je potrebno le simptomatsko zdravljenje, stabilizacija krvnega obtoka in zdravljenje osnovne bolezni, na primer akutnega miokardnega infarkta. Če pa oživljanje traja daljši čas, ko se bolniki ne osvestijo, ali pa so somnolentni ter potrebujejo umetno ventilacijo, pa se začetnemu zdravljenju osnovne bolezni in stabilizaciji krvnega obtoka priključijo tudi ukrepi za zmanjšanje oziroma preprečevanje ishemične nevrološke okvare in okvare parenhimskih organov. Okvare posameznih organov ob kardiopulmonalnem oživljanju so odvisne od občutljivosti tkiv na hipoksijo, anoksijo in pretok. Med srčnim zastojem nastanejo okvare predvsem zaradi anoksije, čez čas pa tudi zaradi centralizacije krvnega obtoka ter uporabe zdravil. Najobčutljivejši so možgani, ledvice nato jetra.

Normalizacija krvnega obtoka je predpogoj za preživetje po srčnem zastoju, nato pa sledijo čim hitrejši ukrepi, da preprečimo možganske okvare s čim hitrejšo normalizacijo sestave krvi, predvsem pH, nasičenost hemoglobina s kisikom in ravni CO₂, glukoze in elektrolitov ter zmerna podhladitev s ciljno temperaturo telesa 32-34°C (Kamenik, 2007).
8.2 POŠKODBA MOŽGANOV IN HRBTENJAČE

Poškodbe možgan postajajo globalna "tiha" epidemija, ter v razvitem svetu predstavljajo velik medicinski in socialno demografski problem. Možganske poškodbe so krivec za večjo umrljivost moških mlajših od 35 let, kakor vse druge bolezni in poškodbe skupaj. Zaradi kompleksnosti mehanizmov poškodbe, ter reparacije možganskega tkiva, edinstvenosti in variabilnosti človeških možganov in etničnih zadržkov so raziskave, ki se odvijajo na nivoju "medicine možgan" negotove in pogosto podajajo netočne izide, ter so finančno obremenjujoče. Raziskave o možganskih poškodbah, ki so jih izvajali na živalskih modelih, so zaradi edinstvene vloge in funkcije možganov človeka, ki velja za edinega razumškega živega bitja je mogoče razložiti le bazične poškodbene procese ne pa učinka le teh na temeljno funkcijo možganov, to je na kognitivno-vedenske procese in mentalno funkcioniranje oseb po poškodbi možganov (Grabljevec, 2009).

Pri poškodbi hrbtenja deli telesa, ki so pod okvaro hrbtenja ne delajo normalno. Sporočila, ki potujejo po živcih pod okvaro ne dosežejo možganov zato ker je prevajanje po hrbtenja okvarjeno, ter možgani ne morajo nuditi pravega ukaza. Prav tako okvare hrbtenja preprečijo pravilno delovanje avtonomnega živčnega sistema, ker možgani nimajo več vpliva nanj. Takrat se pojavijo spremembe telesne temperature, krvnega pritiska, delovanje ščernega mehurja, splovil, rodit in prebavil (Mihelič, 2006).

V praksi uporabljamo natančen nadzor nad telesno temperaturo pri takšnih stanjih ter preprečujemo nastanek hipertermije oz. porast telesne temperature nad 38,5°C.

8.3 ISHEMIČNA MOŽGANSKA KAP

Možgansko žilne bolezni so bolezni možganov, ki so posledica žilne okvare. Okvara možganskih struktur predstavlja klinično manifestacijo bolezni, okvara ožilja možganov pa predstavlja vzrok in mehanizem nastanka teh bolezni. Možganska kap pomeni nenaden
nastanek nevroloških simptomov ter znakov, zaradi ishemi možgan ali krvavitve v osrednje živčevje. Ishemična možganska kap (v nadaljevanju IMK) je najpogostejša akutna zapora možganskih žil, ki pa ima za posledico prekinitev preskrbe možganskih struktur s glukozo ter kisikom, pri čemer sledi razpad presnovnega procesa. Infarkt, kateri je posledica tega, pa pomeni strukturno okvaro predela osrednjega živčevja in ireverzibilno stanje. Številne raziskave so ugotovile, da je uporaba tPA (tkivni plazminogen aktivator) za zdravljenje IMK upravičena, in sicer pri jasno definirani skupini bolnikov, v časovnem okviru znotraj treh ur po začetku nevroloških simptomov ter znakov IMK. Tako zdravimo penumbro (relativna ishemična, reverzibilna stanje), saj so procesi, ki nastanejo v jedru že napredovali v stanje, ko poprava ni več mogoča. Odmerak, ki se priporoča je 0,9 mg/kg telesne teže in skupno ne več kot 90mg, ki ga damo 10% v bolusu in 90% v kontinuirani intravenski infuziji, v eni uri (Kokalj, & Lakner, 2009).

V praksi s terapevtsko hipotermijo zdravimo le tiste bolnike, ki so nezavestni po oživljanju in so doživeli srčni zastoj. Pri ostalih bolnikih pri katerih ne gre za srčni zastoj (npr. možganska kap, krvavitev v možgane, encefalitis,…) pa uporabljamo kontrolirano normotermijo.

8.4 NEONATALNA ENCEFALOPATIJA

Neonatalna encefalopatija nastane kot posledica pomanjkanja kisika v obdobju novorojenčka in je enen najbolj pogostih vzrokov težke in dolgotrajne nevrološke poškodovanosti otrok. Če je pri otroku razvita blaga oblika ti praviloma nimajo za posledico gibalne oviranosti, marveč vodi jo v kognitivno poškodovanost katera se lahko pokaže šele v kasnejšem razvoju (Bregant, Neubauer, & Derganz, 2012).

Tudi pri novorojenčkih uporabljamo metode terapevtske hipotermije za boljši nevrološki izid.

Do hipoksične ishemične encefalopatije lahko privede težak porod s komplikacijami kot so:
- raztrganje maternice,
- zadušitev novorojenčka s popkovino,
- abrupcija oz. luščenje posteljice ali
- pri dolgotrajnem oživljanju novorojenčka (Truttmann, Hagmann, & Hagmann, 2012).

Slika 2: Terapevtska hipotermija pri novorojenčku

Vir: Truttmann, Hagmann, & Hagmann (2012)

Slika prikazuje en dan starega otroka ovitega v CureWrap hladilen ovoj priklopljen na napravo CritiCool za zagotavljanje terapevtske hipotermije v intenzivni enoti.
9 PRIPOMOČKI, KI SE UPORABLJajo ZA SISTEMSKO HLAJENJE TELESA

Na splošno lahko pripomočke, ki jih uporabljamo za hlajenje razdelimo na (neinvazivne) pripomočke za hlajenje z uporabo pritrilnih vložkov, ovijalnih oblačil ali gumijastih odej ter (invazivne) pripomočke, za hlajenje sredice telesa z intravaskularnimi katetri (iz kovine ali z baloni z raztopino). Večina raziskav, ki je bila narejenih in je uporabljala intravaskularne pripomočke, je poročala o visoki zanesljivosti pri vzdrževanju temperature sredice telesa ter relativno hitre stopnje hlajenja, ko je bil kateter nameščen. Slaba stran tega pa je, da je nujen postopek vstavitve katetra pred pričetkom ohlajanja, kar je potrebno upoštevati pri izračunu časa »od dogodka do ciljne temperature«. Čas katerega potrebujemo za vstavitev, je odvisen od kliničnega okolja (posebno hitre stalne dostopnosti zdravnikov, kateri izvajajo postopek vstavitve) ter preostalih logističnih dejavnikov (Polderman, & Ingeborg, 2009).

Potencialna težava je tveganje za trombozo zaradi vstavljenega katetra. Nekaj tveganja je povezano z nastankom tromboze s katerimkoli žilnim katetrom, ki leži v centralni veni. Ultrazvočne raziskave poročajo o pojavu tromboze centralne vene zaradi katetra pri 33% do 67% bolnikov, ko je bil čas vstavljenega katetra v centralni veni en teden. Velika večina teh strdkov ostane asimptomatskih ter se samodejno raztopijo, ko se centralna linija odstrani. Dodatna težava je tveganje v povezavi z nastankom okužb zaradi katetra (Polderman, & Girbes, 2002).

Ena manjša raziskava je ultrazvok uporabila za odkrivanje strdkov v povezavi z intravaskularnim hladilnim pripomočkom, ki je bil uporabljen za indukcijo nadzorovane normotermije pri bolnikih s travmatično možgansko poškodbo s povprečnim časom vstavljenega katetra pet dni (Simosa, Petersen, Agarwal, Burke, & Hirsch, 2007).

Potrebno je poudariti, da so bili katetri pri teh raziskavah vstavljeni dalj časa. Tako ostaja nejasno ali se tveganje za trombozo zaradi katetra razlikuje pri katetrih za hlajenje in
Janja Mulec: Terapevtska hipotermija in kontrolirana normotermija

»običajnimi« katetri. Potrebne bodo večje raziskave, da bi dokazali tveganje (ter učinkovitost) teh, ter ostalih hladilnih pripomočkov. Težave, ki se sojavijo pri površinskem ohlajanju so, da je potrebno prekriti veliko bolnikove površine, med 40% in 90% v fazi indukcije, odvisno od učinkovitosti pripomočka za hlajenje in hladilnih odej oziroma vložkov. Intenzivno ter podaljšano površinsko hlajenje lahko vodi do nastanka preležanin in ozeblin. To tveganje je majhno ter je povezano s temperaturo odeje ali vložkov, vrste materiala (večje tveganje je pri gumi, manjše pa pri novejših, sodobnih materialih) ter trajanjem intenzivnega hlajenja. Poglavitne prednosti pri površinskem hlajenju je pri tem, da z njim lahko pričnemo takoj, da to lahko izvedemo medicinske sestre brez prisotnosti zdravnika. Stopnje hlajenja, o katerih prebiramo v literaturi za starejše tehnologije površinskega hlajenja, so veliko nižje pri intavaskularnih katetrih in pri novejših pripomočkih za površinsko hlajenje. Veliko povečanje stopnje hlajenja lahko dosežemo z uporabo infuzije hladne tekočine kot pomožne metode hlajenja. To nakazuje, da pripomočkov za hlajenje ne bi smeli ocenjevati le ali v večini na podlagi njihove hitrosti hlajenja, ampak tudi (in morda predvsem) na njihovi zanesljivosti malega razpona ciljne temperature, na podlagi počasnega in varnega ponovnega segrevanja bolnika ter na podlagi stranskih učinkov zaradi pripomočka in obsega dela zdravnikov in negovalnega osebja (Polderman, & Ingeborg, 2009).

9.1 HLAJENJE Z MRZLIMI OLOGAMI

Hlajenje s pomočjo mrzlih oblog oz. ledu uporabljamo za površinsko hlajenje telesa. Bolniku jih porazdelimo na mesta kjer so velike žile, na primer vrat, dimlje, pod pazduho, pod kolena ali na prsi in pod hrbet imajo dobre fizikalne lastnosti. Zamrzovalniki jih shladijo na -9°C, to je temperatura pri kateri se omrzline pojavijo v relativno majhni verjetnosti (Kralj, & Šoronda, 2016).

Slika 3: Bolnik hlajen z ledenimi oblogami

Vir: interni vir OIIM UKC Maribor (2016)

9.2 HLAJENJE Z OLOGAMI NAPOLNJENIMI S HLADNO VODO

Sistem CritiCool:

- je metoda zdravljenja bolnikov, ki jo uporabljamo po zastoju srca, travmatski poškodbi možgan, akutni možganski kapi,
- metoda se izvaja za hlajanje bolnikov, ki so ostali nezavestni,
- sistem omogoča natančen in kontinuiran nadzor nad bolnikovo temperaturo (MTRE, 2010).

Slika 4: Kontrolna plošča CritiCool

![CritiCool](image)

Vir: interni vir OIIM UKC Maribor (2016)

Terapevtski ovoj (CureWrap):

- sestavljen je iz enega kosa,
- prilagodljiv je telesu in je v tesnem stiku z veliko površino telesa (86%),
- omogoča maksimalni prenos energije s tridimenzionalno površino pokritosti skozi katerega kroži hladna voda,
- omogoča učinkovito vzdrževanje hlajenja, ter indukcijo temperaturo (MTRE, 2010).
Slika 5: Terapevtski ovoj CureWrap

Vir: Resuscitationcentral (b.d.)

Slika 6: Terapevtski ovoj CureWrap 2.

Vir: Resuscitationcentral (b.d.)

Prednosti sistema CritiCool:

- neinvazivnost – neinvaziven postopek hlajenja,
- varnost,
- enostavnost uporabe,
- natančnost – natančen nadzor merjenja telesne temperature,
- maksimalni prenos energije na celotno površino telesa,
- hitri začetki zdravljenja (Member of Mennen Medical Group, 2010)
9.3 HLAJENJE Z MRZLIMI INTRAVENSKIMI INFUZIJSKIMI TEKOČINAMI

To je najpogostejša ter najprimernejša invazivna metoda, ki se izvaja za indukcijo hipotermije. V čim krašem času mora bolnik prejeti 30ml tekočine / kg telesne teže, ohlajene na 4°C. Bolnik običajno prejme 2l ohlajene tekočine. Ta metoda je ena najpogosteje uporabljenih metod. Je zelo poceni, ter enostavna. Poslužujemo se je lahko že v prehospitalnem okolju. Opisana je kot ena začetnih in osnovnih metod, ki se uporabljajo za hlajenje bolnikov (Kralj, & Šoronda, 2016).
Slika 8: Aplikacija mrzlih infuzijskih tekočin pod tlakom za čim hitrejšo aplikacijo

Vir: interni vir OIIM UKC Maribor (2016)

9.4 HLAJENJE Z EZOFAGEALNIM IZMENJEVALCEM TOPLOTE

Slika 9: Ezofagealni izmenjevalec toplote:

Vir: Advanced Cooling Therapy (b.d.)

Slika 10: Ezofagealni izmenjevalec toplote

Vir: interni vir OIIM UKC Maribor, 2016

Sonde za hlajenje nikakor ne smemo uporabljati pri bolnikih, kateri imajo preoblikovan želodec ali če obstaja možnost, da je požiralnik poškodovan. Pri bolnikih, ki so v zadnjih 24 urah popili bazičen ali kisel strup, ter pri bolnikih, kateri tehtajo manj kot 40 kg. Ezofagealni
izmenjevalec toplote se sme vstaviti v požiralnik, ko smo bolnikovo zračno pot zavarovali s tubusom ali traheostomsko cevko. Za natančno globino, preden vstavimo ezofagealni izmenjevalec toplote, le tega namestimo in izmerimo od bolnikovih ustnic do ušesa ter nato od ušesa do konice ksifoida ter dobro pritrdimo da ne izpade. Preden vstavimo ezofagealni izmenjevalec toplote za hlajenje, ga namažemo z lubrikantom, ki je topen v vodi. Vstavljam ga z nežnim pritiskom skozi ustna mimo žrela v požiralnik. Ne smemo pa uporabljati prekomerne sile, ker lahko s tem povzročimo poškodbo žrela, drugih tkiv ali krvavenje. Pravilno namestitev ezofagealnega izmenjevalca toplote potrdimo z naslednjim posegom:

- z vbrizganjem 5 do 20 ml zraka skozi osrednji lumen, nato z auskultacijo skozi želodec pri čemer zaslišimo značilen zvok,
- aspiracija želodčne vsebine skozi osrednji lumen, ter
- potrditev mesta in namestitev ezofagealnega izmenjevalca toplote z rentgenskim slikanjem (Advanced Cooling Therapy, b.d.).

Slika 11: Potek hlajenja

Vir: "The Esophageal Cooling Device" (b.d.)
10 VLOGA MEDICINSKE SESTRE PRI IZVAJANJU SISTEMSKEGA HLAJENJA TELESA

Ob sprejemu bolnika pri katerem je potrebno pričeti z ohlajanjem telesa, pristopi zdravstveni ter negovalni tim in nemudoma začne s postopki hlajenja. Zdravnik intenzivist odredi kako ga ohlajati. Ponavadi se prične ohlajati z hlajeno infuzijo (4⁰C NaCl ali Sol. Ringer), ki jo je potrebno dati bolniku v čim krašem času. Za nadzor nad infuzijami je velikokrat zadolžena ena medicinska sestra, ki skrbi, da tekočine stečejo v čim krašem času, ter da je volumen čim večji ter količina takšna kot jo predpiše zdravnik.

Nato zdravnik bolniku vstavi ezofagealni izmenjevalec toplote, ki ga priključimo na zunanj enoto za hlajenje, nastavimo primerno ciljno temperaturo ter pričnemo z ohlajanjem bolnikovega telesa.

Kadar na oddelku nimamo na razpolago ezofagealnega izmenjevalca toplote, izberemo ustrezno velikost hladilnih ovitkov za telo (CureWrap) in bolnika ovijemo, namestimo potrebna tipala za merjenje bolnikove temperature ter pričnemo z ohlajanjem.

Kadar se bolnik ne ohlaja dovolj hitro in po zastavljenih smernicah, bolnika dodatno obložimo z ledenimi vrekami ter po naročilu zdravnika apliciramo infuzijo ohlajenih tekočin.

Pri takšnem bolniku, ki je življenjsko ogrožen je potreben nenehen nadzor nad življenjskimi funkcijami ter poostrena zdravstvena nega.

Potrebno je skrbeti za nadzor nad temperaturo (da se bolnik ne preveč ohlaja ali segreva), pravočasno menjavanje infuзиjskih steklenic, zamenjavo ledenih vrekč, ter nadzor nad srčnim ritmom, zaradi možnosti pojava motenj srčnega ritma. Povečan nadzor nad anelgezijo ter sedacijo, preprečevanje trenjenja (poraba kisika je večja). Poostrena je tudi skrb za kožo.
Takšnega bolnika, saj ohlajanje lahko privede tudi do poškodb na koži. Izpostavljene dele je potrebno skrbno opazovati, da ne bi prišlo do omrzlin.

Enako pomemben je tudi postopek segrevanja bolnika. Posebna pazljivost je pomembna, da temperatura sredice telesa ne narašča prehitro. Če se bolnik prehitro segreva, o tem nemudoma obvestimo zdravnika.

10.1 IZOBRAŽEVANJE ZAPOSLENIH V ZDRAVSTVENI NEGI S PODROČJA NORMOTERMĲE IN HIPOTERMĲE

Neformalna izobraževanja potekajo tudi v okviru sekcij Zbornice zdravstvene nege Slovenije-Zveze medicinskih sester in zdravstvenih tehnikov Slovenije.
Prav tako na OIIM UKC Mb potekajo tedenski timski sestanki, kjer pridobimo podatke o poteku dela z biomedicinskimi pripomočki za izvajanje terapevtske hipotermije in vzdrževanje normotermije. Veliko informacij o tem načinu zdravljenja nam podajo tudi zdravniki.

10.2 ZDRAVSTVENO VZGOJNO DELO PRI BOLNIKU IN SVOJCIH PRI INDUCIRANI HIPOTERMII

11 RAZPRAVA

Skozi diplomsko nalog smo prišli do odgovorov na zastavljena raziskovalna vprašanja. Le ta smo pridobili z analizami raziskav, strokovne in druge literature. Na osnovi diplomske naloge smo definirali, kaj je terapevtska hipotermija in kontrolirana normotermija in kako se izvaja.

Odgovori na raziskovalna vprašanja:

1. Kakšni so pozitivni učinki zdravljenja s terapevtsko hipotermijo?

Polderman, & Ingeborg (2009) ugotavljata, da je v rokah izkušenih zdravstvenih delavcev terapevtska hipotermija povsem koristna in učinkovita saj z njo na intenzivnih enotah bolnišnic zmanjšamo ali preprečimo nevrološke poškodbe. Prav tako je po njunih besedah izredno pomembno vzdrževanje normotermije pri tistih bolnikih, ki imajo močno povišano telesno temperaturo, ki škodi uspehu zdravljenja.

De Vitte, & Sessler (2002) pravita, da naj bi bila indukcija hipotermije lažja pri starejših kakor pri mlajših bolnikih. Tudi prilagajanje opiatov in pomirjeval s katerimi zaustavimo mehanizme segrevanja telesa so po navadi precej večji pri mlajših bolnikih.

Polderman, & Ingeborg (2009) ugotavljata, da ko se sredica telesa spusti pod 33.5°C bolnik postane stabilnejši, preneha se drgetanje in ustavi se glavne spremembe hemodinamskih parametrov, katere povzročijo hipotermijo.

Nielsen, et al. (2013) so objavili največjo raziskavo do sedaj na bolnikih s srčnim zastoju, ki so bili oživljeni. Ugotovili so primerljive rezultate tistih, ki so bili hlajeni s terapevtsko hipotermijo in tistimi pri katerih so vzdrževali kontrolirano normotermijo.

V UKC Maribor na OIIM je bil izdelan protokol, ki ga uporabljamo za terapevtsko hipotermijo in kontrolirano normotermijo, ki sloni na lastnih in tujih dognanjih. Ta protokol se redno spreminja in dopolnjuje. Hladimo vse bolnike, ki so doživeli srčni zastoj ne glede na to kakšen ritem je bil ob začetku dodatnih postopkov oživljanja. Terapevtske hipotermije se poslužujemo tudi pri tistih bolnikih kateri so doživeli sekundarni zastoj v bolnišnici in tiste s srčnim zastojem pri katerih ni bilo očvidev.

2. Kakšna je vloga medicinske sestre pri izvajanju terapevtske hipotermije in vzdrževanju normotermije?

Pri pregledovanju literature smo ugotovili, da je vloga medicinske sestre pri izvajanju sistemskega hlajenja telesa izredno pomembna, saj od nje zahteva ogromno znanja, nenehno učenje in veščine opazovanja. Znati mora hitro odreagirati kadar opazi, da se bolnik ne hlađi po ciljnih smernicah ali opazi kakršen koli stranski učinek terapevtske hipotermije.

Prav tako pri tistih bolnikih, ki imajo povišano telensko temperatura od medicinske sestre zahteva, da o tem obvesti zdravnika, aplicira predpisano terapijo, ter prične z metodami ohlajanja, ki nižajo povišano telesno temperatura (ledene obloge).
Medicinske sestre se morajo nenehno izobraževati, slediti najnovejšim smernicam zdravljenja bolnikov ter se redno seznanjati z najnovejšimi aparaturami, ki pomagajo bolniku pri preživetju.

Prav tako mora biti medicinska sestra pri hudo bolnemu bolniku pozorna tudi do družinskih članov in svojcev bolnika. Znati jim mora prisluhniti, jih potolažiti ter razložiti potek zdravljenja bolnika in razlago aparatur katere so nujno potrebne pri zdravljenju svojca.

3. Kateri so najpogostejši načini za doseganje hipotermije in normotermije?

V UKC Maribor na oddelku za interno intenzivno medicino najpogostejše uporabljamo hlajenje z mrzlimi oblogami, hlajenje z oblogami napolnjenimi s hladno vodo, hlajenje z mrzlimi intravenskimi infuzijskimi tekočinami, ter hlajenje z ezofagealno hladilno sondo.

Z lastnimi izkušnjami in analizo literature pridemo do zaključka, da se najbolj uspešno in v najkrajšem možnem času približamo ciljnih temperatur, če bolnika ohlajamo z napravo CritCool ali z ezofagealno hladilno sondu.
12 SKLEP

V diplomskem delu o terapevtski hipotermiji in kontrolirani normotermiji ugotavljamo, da se je tehnika izvedbe terapevtske hipotermije razvijala s pomočjo večjega števila raziskav, v katerih so opredelili vlogo terapevtske hipotermije in kontrolirane normotermije pri zdravljenju različnih bolezni, predvsem pa pri nezavestnih bolnikih po srčnem zastoju. Za varno izvedbo terapevtske hipotermije in kontrolirane normotermije je vedno potreben multidisciplinaren pristop, kjer so v zdravljenje neposredno vključeni številni zdravstveni delavci, od ekipe nujne medicinske pomoči, preko urgentnih ambulant, laboratorijskih delavcev in radioloških ekip, do ekipe v enotah za intenzivno zdravljenje. V bodoči še pričakujemo spremembe pri indikacijah za izvedbo kontrolirane normotermije in terapevtske hipotermije, ter nove pripomočke, s katerimi lahko vplivamo na spremembe telesne temperature.

Anesthesiology, 96, str. 467-484.

Erlinge, D., Götberg, M., Lang, I., Holzer, M., Noc, M., Clemmensen, P., Jensen, U., Metzler,

Kamenik, B. (2008). Akutna stanja; znamenja, simptomi, sindromi, diferencialna diagnoza in
ukrepanje. V Š. Grmec, & D. Kupnik (Ured.), *Tretji strokovni seminar z mednarodno udeležbo, zbornik predavanj in algoritmov ukrepanja*. Maribor: Zdravstveni dom dr. Adolfa Drolca Maribor – Center za nujno medicinsko pomoč in reševalne prevoze.

Koran, ZE. (2008). Therapeutic Hypothermia in the post resuscitation Patient: The

Member of Mennen Medical Group (MTRE) (2010). CritiCool, Thermo Regulation System. Izrael: Mennen Medical Ltd.

hypothermia in patients with various types of neurologic injury with use of large volumes of ice-cold intravenous fluid. *The journal of emergency medicine, 33(12)*, str. 2744-2751.

