| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva Pomoč

Naslov:The role of visualization in estimating cardiovascular disease risk : scoping review
Avtorji:ID Svenšek, Adrijana (Avtor)
ID Lorber, Mateja (Avtor)
ID Gosak, Lucija (Avtor)
ID Verbert, Katrien (Avtor)
ID Klemenc-Ketiš, Zalika (Avtor)
ID Štiglic, Gregor (Avtor)
Datoteke:.pdf publichealth-2024-1-e60128-3.pdf (435,60 KB)
MD5: 13FFD471C800EA1F54406801F682C74F
 
Jezik:Angleški jezik
Vrsta gradiva:Znanstveno delo
Tipologija:1.02 - Pregledni znanstveni članek
Organizacija:FZV - Fakulteta za zdravstvene vede
Opis:Background: Supporting and understanding the health of patients with chronic diseases and cardiovascular disease (CVD) risk is often a major challenge. Health data are often used in providing feedback to patients, and visualization plays an important role in facilitating the interpretation and understanding of data and, thus, influencing patients’ behavior. Visual analytics enable efficient analysis and understanding of large datasets in real time. Digital health technologies can promote healthy lifestyle choices and assist in estimating CVD risk. Objective: This review aims to present the most-used visualization techniques to estimate CVD risk. Methods: In this scoping review, we followed the Joanna Briggs Institute PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. The search strategy involved searching databases, including PubMed, CINAHL Ultimate, MEDLINE, and Web of Science, and gray literature from Google Scholar. This review included English-language articles on digital health, mobile health, mobile apps, images, charts, and decision support systems for estimating CVD risk, as well as empirical studies, excluding irrelevant studies and commentaries, editorials, and systematic reviews. Results: We found 774 articles and screened them against the inclusion and exclusion criteria. The final scoping review included 17 studies that used different methodologies, including descriptive, quantitative, and population-based studies. Some prognostic models, such as the Framingham Risk Profile, World Health Organization and International Society of Hypertension risk prediction charts, Cardiovascular Risk Score, and a simplified Persian atherosclerotic CVD risk stratification, were simpler and did not require laboratory tests, whereas others, including the Joint British Societies recommendations on the prevention of CVD, Systematic Coronary Risk Evaluation, and Framingham-Registre Gironí del COR, were more complex and required laboratory testing–related results. The most frequently used prognostic risk factors were age, sex, and blood pressure (16/17, 94% of the studies); smoking status (14/17, 82%); diabetes status (11/17, 65%); family history (10/17, 59%); high-density lipoprotein and total cholesterol (9/17, 53%); and triglycerides and low-density lipoprotein cholesterol (6/17, 35%). The most frequently used visualization techniques in the studies were visual cues (10/17, 59%), followed by bar charts (5/17, 29%) and graphs (4/17, 24%). Conclusions: On the basis of the scoping review, we found that visualization is very rarely included in the prognostic models themselves even though technology-based interventions improve health care worker performance, knowledge, motivation, and compliance by integrating machine learning and visual analytics into applications to identify and respond to estimation of CVD risk. Visualization aids in understanding risk factors and disease outcomes, improving bioinformatics and biomedicine. However, evidence on mobile health’s effectiveness in improving CVD outcomes is limited.
Ključne besede:cardiovascular disease prevention, risk factors, visual analytics, visualization, mobile phone, PRISMA
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum sprejetja članka:02.05.2024
Datum objave:14.10.2024
Založnik:JMIR Publications
Leto izida:2024
Št. strani:str. 1-17
Številčenje:Letn. 10
PID:20.500.12556/DKUM-91184 Novo okno
UDK:616.1
COBISS.SI-ID:212039427 Novo okno
DOI:10.2196/60128 Novo okno
ISSN pri članku:2369-2960
Datum objave v DKUM:26.11.2024
Število ogledov:0
Število prenosov:8
Metapodatki:XML DC-XML DC-RDF
Področja:Ostalo
:
SVENŠEK, Adrijana, LORBER, Mateja, GOSAK, Lucija, VERBERT, Katrien, KLEMENC-KETIŠ, Zalika in ŠTIGLIC, Gregor, 2024, The role of visualization in estimating cardiovascular disease risk : scoping review. JMIR public health and surveillance [na spletu]. 2024. Vol. 10, p. 1–17. [Dostopano 6 april 2025]. DOI 10.2196/60128. Pridobljeno s: https://dk.um.si/IzpisGradiva.php?lang=slv&id=91184
Kopiraj citat
  
Skupna ocena:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:JMIR public health and surveillance
Založnik:JMIR Publications
ISSN:2369-2960
COBISS.SI-ID:526126361 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:N3-0307-2023
Naslov:Obogatitev pogovornih razložljivih metod umetne inteligence v zdravstvu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:14.10.2024

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:preprečevanje bolezni srca, dejavniki tveganja, vizualna analitika, vizualizacija, mobilni telefon, PRISMA


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici